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Supervised Learning
x y



With humans in the loop, learning algorithms 
should be able to learn quickly from data that is 

both easy and safe for people to provide.

We can accomplish these goals by taking advantage 
of the structure present in specific problems.



Weakly-Supervised 3D Intersection 
Structure Estimation
(slides hidden from public version)



Modeling Interaction for Self-
Driving Cars



Up Till Today: Driving in Isolation



Up Till Today: Driving in Isolation
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(will talk about some cool perception work if I have time)



The Good



The Bad





The Ugly



What was the problem here?

???



Behavior Prediction

• Approach V0: Constant Velocity

• Will work decently well on 
highways

• Or for things like drones

uH = 0



Behavior Prediction

• Approach V1: Isolated Prediction

• Fit network to map from state 
to action of car.

• Q: Why will this not work 
well?

• A: Need to incorporate 
information about other cars.

uH =



Behavior Prediction

• Approach V2: Full Prediction

• Fit network to map from state 
of all cars to action of a 
particular car

• Q: Why might this not work 
well?

• A: Your actions influence the 
actions of other cars

uH =



Behavior Prediction
• Problem: other drivers react to the positions and actions of 

your car

• Predictions → Your Actions → Other Actions → Pred.

• So if you update your policy, you change input distribution 
to network

• Solution: learn a function that models the person’s response 
to a robot’s action

• Question: what kind of function to learn? Joint work w/
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E[Ur(πr, πh)]

Black-Box Models
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Theory of Mind
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Theory of Mind

x

uR
uH

…that is optimalH will take the action

…for their objective.

Thus, R should take the action that will
cause H to take the action that jointly
maximizes     Ur(ur, uh)



Inferring Utility Functions

• Approach: Inverse Optimal Control / Reinforcement 
Learning

• RL: Given reward function, find best actions

• IRL: Given actions, find reward function that would 
have produced these actions

• High level blueprint: Fix a set of features a person driving 
could care about. Figure out what weights on these 
features would produce observed behavior on average.



Theory of Mind Results

• Can learn model from recorded human-human driving 
data

• Much safer than throwing faulty car on road

Model-Free

Trajectory Visualisations @ 2000 HDS

MB-IToMModel-Free

Trajectory Visualisations @ 2000 HDS

MB-IToM



Scaling to the Real World

• Unfortunately, running a nested optimization for each 
other car on the road is computationally infeasible to do 
online

• Have only accounted for subset of pairwise interactions

• Best of both worlds: At training time, use ToM as data 
source to train network. At deployment time, use network 
for fast inference via a single forward pass.



Predictive Network Architecture:
Waymo’s MultiPath



Leveraging Problem Structure

• Given: we have history of state/action pairs of other 
agents from perception + other state information (lights)

• Roughly, where can a car go in the following situation?

Trajectory Anchors
p1 p2 p3

p1 + p2 + p3 = 1



Predicting Offsets
• Q: Why is this a good idea?

• A: Lower Variance

• Q: Do we just want to predict an offset?

• A: No, also want our network to be able to express uncertainty



Detour: Multivariate Gaussian
• Univariate Gaussian: fully determined by mean and 

variance

• Maximum entropy distribution with these constraints - 
makes the fewest further assumptions

• Multivariate Gaussian: mean becomes vector, variance 
becomes matrix

• 2D for our use case.



Model Output: Mixture of Gaussians
• Single Trajectory Anchor Distribution (predict       &      ):

• Full distribution over possible future states (predict      ):

• Loss function:

π

μ Σ



Model Output Visualized



Model Output Snazzily Visualized



Predictive Network Architecture:
Waymo’s MultiPath



Expanded Self-Driving Stack

Perception 
(Camera / LIDAR)

Multi-Head 
CNN State Information 

(Lane Lines / Signs)

Router 
(Start → Destination) 

Uses traffic info.
Waypoints

A* Search

TrajectoryTrajOpt

Controls 
(Pedal/

Steering)

LQR

MPC
Behavior Predictions 

(other car pos.)



Scaled Autonomy



Problem Setup

• Consider a fleet of autonomous robots, each 
independently executing an identical suboptimal policy

• At any time, the operator can step in and teleoperate a 
single robot

• Which robot should the operator choose to teleoperate?



Core Problem: Teleoperator Performance 
Degrades as Fleet Sizes Grow

 ?

When presented with a small fleet of 
robots, skilled teleoperators can 
supervise them effectively and step 
in where their assistance is needed 
most.

However, teleoperators do 
not have limitless attention 
which makes it difficult for 
them to supervise large 
fleets.



Key Idea

Learn from user interventions given a few robots to 
anticipate which of many robots need help the most.

 1) This is easier for people to provide good data for 
because they can simultaneously focus on all robots.
2) Imitating these switches puts the person in situations 
where they can best provide demonstrations to improve 
the robot policy.



Method



Results: User Study



Results: Real Robots
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Questions?


