
Leveraging Human Input
for Self Driving Cars

Gokul Swamy

Supervised Learning
x y

With humans in the loop, learning algorithms
should be able to learn quickly from data that is

both easy and safe for people to provide.

We can accomplish these goals by taking advantage
of the structure present in specific problems.

Weakly-Supervised 3D Intersection
Structure Estimation
(slides hidden from public version)

Modeling Interaction for Self-
Driving Cars

Up Till Today: Driving in Isolation

Up Till Today: Driving in Isolation

Perception
(Camera / LIDAR)

Multi-Head
CNN State Information

(Lane Lines / Signs)

Router
(Start → Destination)

Uses traffic info.
Waypoints

A* Search

TrajectoryTrajOpt

Controls
(Pedal/

Steering)

LQR

MPC

(will talk about some cool perception work if I have time)

The Good

The Bad

The Ugly

What was the problem here?

???

Behavior Prediction

• Approach V0: Constant Velocity

• Will work decently well on
highways

• Or for things like drones

uH = 0

Behavior Prediction

• Approach V1: Isolated Prediction

• Fit network to map from state
to action of car.

• Q: Why will this not work
well?

• A: Need to incorporate
information about other cars.

uH =

Behavior Prediction

• Approach V2: Full Prediction

• Fit network to map from state
of all cars to action of a
particular car

• Q: Why might this not work
well?

• A: Your actions influence the
actions of other cars

uH =

Behavior Prediction
• Problem: other drivers react to the positions and actions of

your car

• Predictions → Your Actions → Other Actions → Pred.

• So if you update your policy, you change input distribution
to network

• Solution: learn a function that models the person’s response
to a robot’s action

• Question: what kind of function to learn? Joint work w/

max
πr

E[Ur(πr, πh)]

Black-Box Models

x

uR
uH

x

uR
uH

max
πr

E[Ur(πr, πh)]

Theory of Mind

x

uR
uH

Theory of Mind

x

uR
uH

…that is optimalH will take the action

…for their objective.

Thus, R should take the action that will
cause H to take the action that jointly
maximizes Ur(ur, uh)

Inferring Utility Functions

• Approach: Inverse Optimal Control / Reinforcement
Learning

• RL: Given reward function, find best actions

• IRL: Given actions, find reward function that would
have produced these actions

• High level blueprint: Fix a set of features a person driving
could care about. Figure out what weights on these
features would produce observed behavior on average.

Theory of Mind Results

• Can learn model from recorded human-human driving
data

• Much safer than throwing faulty car on road

Model-Free

Trajectory Visualisations @ 2000 HDS

MB-IToMModel-Free

Trajectory Visualisations @ 2000 HDS

MB-IToM

Scaling to the Real World

• Unfortunately, running a nested optimization for each
other car on the road is computationally infeasible to do
online

• Have only accounted for subset of pairwise interactions

• Best of both worlds: At training time, use ToM as data
source to train network. At deployment time, use network
for fast inference via a single forward pass.

Predictive Network Architecture:
Waymo’s MultiPath

Leveraging Problem Structure

• Given: we have history of state/action pairs of other
agents from perception + other state information (lights)

• Roughly, where can a car go in the following situation?

Trajectory Anchors
p1 p2 p3

p1 + p2 + p3 = 1

Predicting Offsets
• Q: Why is this a good idea?

• A: Lower Variance

• Q: Do we just want to predict an offset?

• A: No, also want our network to be able to express uncertainty

Detour: Multivariate Gaussian
• Univariate Gaussian: fully determined by mean and

variance

• Maximum entropy distribution with these constraints -
makes the fewest further assumptions

• Multivariate Gaussian: mean becomes vector, variance
becomes matrix

• 2D for our use case.

Model Output: Mixture of Gaussians
• Single Trajectory Anchor Distribution (predict &):

• Full distribution over possible future states (predict):

• Loss function:

π

μ Σ

Model Output Visualized

Model Output Snazzily Visualized

Predictive Network Architecture:
Waymo’s MultiPath

Expanded Self-Driving Stack

Perception
(Camera / LIDAR)

Multi-Head
CNN State Information

(Lane Lines / Signs)

Router
(Start → Destination)

Uses traffic info.
Waypoints

A* Search

TrajectoryTrajOpt

Controls
(Pedal/

Steering)

LQR

MPC
Behavior Predictions 

(other car pos.)

Scaled Autonomy

Problem Setup

• Consider a fleet of autonomous robots, each
independently executing an identical suboptimal policy

• At any time, the operator can step in and teleoperate a
single robot

• Which robot should the operator choose to teleoperate?

Core Problem: Teleoperator Performance
Degrades as Fleet Sizes Grow

 ?

When presented with a small fleet of
robots, skilled teleoperators can
supervise them effectively and step
in where their assistance is needed
most.

However, teleoperators do
not have limitless attention
which makes it difficult for
them to supervise large
fleets.

Key Idea

Learn from user interventions given a few robots to
anticipate which of many robots need help the most.

 1) This is easier for people to provide good data for
because they can simultaneously focus on all robots.
2) Imitating these switches puts the person in situations
where they can best provide demonstrations to improve
the robot policy.

Method

Results: User Study

Results: Real Robots

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

A
vg

.C
um

ul
at

iv
e

R
ew

ar
d

Hardware Team Performance
Manual Assisted

Questions?

