Intro to Reinforcement Learning
Gokul Swamy

Supervised Learning

O Learn some sort of mapping from input to output that
minimizes some notion of error

O Learn how to take tests well

Classification Instance
+ Localization

Classification Object Detection

Segmentation

CAT CAT, DOG, DUCK CAT, DOG, DUCK

e .
Y

Single object Multiple objects

Unsupervised Learning

O Learn patterns to make downstream tasks easier

O Clustering, auto-encoders, density models

Reconstructed
Input <~ Ideally they are identical. ------------------ > input
x ~ x’'
Bottleneck!

Encoder Decoder ,
* 9¢ | fo =

An compressed low dimensional
representation of the input.

So far

CLASS|CAL MACHINE LEARNING

Data is pre-categorized
or numerical

SUPERVISED

Predict Predict
a number

a category
REGRESS|ON

«Divide the ties by length»

CLASSIFICATION

«Divide the socks by color»

Data is not Labeled
n any way

UNSUPERVISED

Divide
by similarity

CLUSTERING

«Split up similar clothing
into Stacks»

|dentify sequences

Find hidden
dependencies

_ASSOC|AT|ON

«Find What clothes | often
wear together»

Y

DIMENS|ON
REDUCTION

(generalization)
«MokKe the best outfits from the given clothes»

.

What's missing here?

® Limited notion of one decision influencing the next input
® Consider executing multi-step plans in chess
® Limited notions of dealing with uncertainty

® How do you learn if there isn’t a precise label for what
you're doing?

Introducing State: Markov Chains

O Model of a random process where at each timestep, the value of the random
variable transitions

O We're only going to consider discrete-time Markov Chains

O (First Order) Markov Property: The future is independent of the past
conditioned on the present

2. —o00®0
c:o

t=1 t=2 t=3 t=4

0.2

Introducing Agency:
Markov Decision Processes

Definitions Example:
Markov decision process M=A{S A T,r}
S — state space states s € S (discrete or continuous)
A — action space actions a € A (discrete or continuous)
T - transition operator (now a tensor!) T(s,a,s’) = P(s’|s,a)
r — reward function r:SxA—R
() — reward

Introducing Partial Observability: POMDPs

Definitions

partially observed Markov decision process M={S, A0, T,Er}
S — state space states s € S (discrete or continuous)

A — action space actions a € A (discrete or continuous)

O — observation space observations o € O (discrete or continuous)
T — transition operator (like before) @

£ — emission probability p(oss;)

r — reward function r:SxA—-R

RL Framework

action
A

Environment

RL Definitions

O Environment: The world in which our problem is set up. The
environment updates according to dynamics

O State: All the aspects of the environment at a particular time that
are relevant to the problem we’re trying to solve

O Agent: Can take actions to influence the state of the world

O Policy: How our agent decides to act given the state of the world.
A distribution over actions conditioned on state.

O Trajectory: List of state-action tuples generated by our interaction
with env.

RL Framework Formalized

Takes action (4 according to W(at, St)

| |
| \

Give us St 1 by sampling from T(3t+1‘3ta CLt) and 7" = R(St, CLt)

The Reinforcement Learning Objective

Maximize expected utility!

T
pH(Sb al,...,8T, aT) — p(sl) H W@(at|st)p(st—l—1|st7 at)
L J t:].‘ J
po(T) Markov chain on (s, a)

0* = arg max B py (1) zt: r(s¢, az)

Value and Q Functions

O Discounted sum of future rewards:

o
Ry = 141 + Yreg2 + Y1148 + Y Tega + oo = ZW%MH
k=0

O The average of this defines the “value” of a state:

V7i(s) =

D [Rt s5¢ = s]

O We can break this down even further to actions:

Q™ (s,a) = Ex|Ry|st = s,a; = a

Combining Value and Q Functions

O Oft Policy:

V*(s) = max Q(s, a)

O On Policy:
Vi(s) = E[Q(s,)]

O Advantage Function:

A%(s,a) = Q%(s,a) — V(s)

Known T/R + Discrete States: Policy Iteration

o Evaluation: For fixed current policy =, find values with policy evaluation:

o Iterate until values converge:

Vit 1 (s) < Y. T(s,mi(s),8") |R(s,7mi(s),8") + 7 Vi (s)]

o Improvement: For fixed values, get a better policy using policy extraction
o One-step look-ahead:

m;+1(s) = arg maXZT(s, a,s) {R(s, a,s’) + ’yVﬁi(s/)]

S

Taxonomy of RL Algorithms

IRL Imitation
(if time) Learning

Behavioral
Cloning

<

Policy

Q Learning

Algorithms el

Algorithms

Less Data,

Lower Performance

>

More Data,
Better Performance*

Running Example: Breakout

Imitation Learning: Behavioral Cloning

O Given demonstrations of a person performing a task, learn
a function that maps from states to their actions

O This is a completely supervised approach to learning a
policy

O Does not generalize well: imagine trying to drive a car

loss = % Z (7(s;) — ai)2

Imitation Learning: DAGGER

1. train 7T0(Ut|0t) from human data Dw* — {01, Uty eery ON,UN}

2.l run 7T9(Ut|0t) to get dataset D, = {01, ooy OM}

4. Aggregate: D« < D_« UD_

5. GOTO step 1.

(For more info, read https:/ /www.ri.cmu.edu/pub_files/
2015/3/InvitationTolmitation_3_1415.pdf)

https://www.ri.cmu.edu/pub_files/2015/3/InvitationToImitation_3_1415.pdf
https://www.ri.cmu.edu/pub_files/2015/3/InvitationToImitation_3_1415.pdf
https://www.ri.cmu.edu/pub_files/2015/3/InvitationToImitation_3_1415.pdf

Model-Based RL (1)

O Learn a function that captures dynamics / rewards of
system

O Then, use classical planning methods to optimize your
reward function

model-based reinforcement learning version 1.0:
1. run base policy my(as|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize). || f(si,a;) — s’ [

Why is f hard to learn?

3. plan through f(s,a) to choose actions

4. execute those actions and add the resulting data {(s,a,s’);} to D

Model-Based RL (2)

O What if you make an error while predicting what’s going
to happen?

O Replan at every timestep (Model Predictive Control)

model-based reinforcement learning version 1.5:
1. run base policy mo(as|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y, || f(si, a;) — s}||?
3. plan through f(s,a) to choose actions

4. execute the first planned action, observe resulting state s’ (MPC)

every N steps

5. append (s.a.s’) to dataset D

Planning: iLQR

O Approximate dynamics as linear function
O Approximate cost (negative reward) as quadratic function

O Then, there exists an easily computable optimal set of
controls (actions)

xir1 = Axy+ Buy, tE{O,l,...,N}

wnat

ro = X
N-1
J(U, xzg) = Z (2 Qzr + ul Rus) + Ty QfzN
7=0
’U,: — —Ktz.

P, = Q+ K}/RK;+ (A—BK;)'P,;1(A— BK;), Py = Q;
K; = (R+B'P1B)'BTP,A.

Planning: TrajOpt

O Turn planning into constrained optimization problem
O Cost: Learned reward function
O Constraints: Learned dynamics
O Use convex approximation of above to solve in real-time

O Expand and shrink trust region based on how accurate
approximation 1s

Planning: TrajOpt

1: for PenaityIteration =1,2,... do

2:
3:
4:

0 e R

10:

11:
12:

13:
14:
15:
16:
17:
18:

for Convexifylteration =1,2,... do
f, g, h = ConvexifyProblem(f, g, h)
for TrustRegionlteration =1,2,... do

nincq 'neq

X ¢ argmin F) +p Y G+) hi()]

1=1 =1

subject to trust region and linear constraints
if TrueImprove / Modellmprove > ¢ then
s+ Ttxs > Expand trust region
break
else
ST *8§ > Shrink trust region

if s < xtol then
goto 15

if converged according to tolerances xtol or ftol then
break
if constraints satisfied to tolerance ctol then
break
else
o k*x

Model-Free RL

O Instead of learning the dynamics, why don’t we learn just

the policy
O In some sense, this is all we're really after
O More compact representation of correct action to take

O Sometimes, a full dynamics model is unnecessary and
harder to learn (extraneous entries in state)

O More info: https:/ /arxiv.org/pdf/1805.00909.pdf

https://arxiv.org/pdf/1805.00909.pdf

Q Learning

O With the correct Q function, policy is just argmax over
actions

O Oft-Policy!
Tabular Q-Learning DQNish*

Qo(s,a) < r(s,a) + ymaxy Qp(s’,a’)

fit a model to
ﬁ estimate return online () iteration algorithm:
/

. /
= 1. take some action a; and observe (s;,a;,s;, ;)
generate

2. y; = r(si,ai) + 7 maxy' Qd)(sgaag)
, d
G 306 ¢ — ate(si) (Qu(siia;) — i)

samples (i.e.
run the policy)

—

improve the
policy

a = arg maxa 4(s,a) *= hacks like target network to work

Soft Actor-Critic (Extra)

Soft Policy Iteration Soft Actor-Critic

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft Actor-
Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor. ICML, 2018.

1. Soft policy evaluation:

Fix policy, apply soft Bellman backup until converges: 1 Take one stochastic

«— B - ' oY1 /! gradient step to minimize
Qs,8) = 7(5,8) + By, wron [Q(8', &)~ logm(@]s))] soft Bellman residual

This converges to Q7.r

2. Soft policy improvement:

Update the policy through information projection: _
: 2. Take one stochastic

— exp Q™M (s, -)) gradient step to minimize
Z the KL divergence

Tnew = arg min Dk, (w'(-|s)
T

For the new policy, we have Q" > Q’fom

3. Execute one action in the

3. Repeat until convergence environment and repeat

Policy Gradient (1)

O What if we try to directly optimize RL objective through
gradient descent instead of learning a Q function?

O Why might this be a good idea?

O First, lets abbreviate our objective as

0) — ET”W@ [Z R(St7 at)]

o Then, we can substitute and differentiate to get us

mo(7) Vg log(me(7)) —VMG()

VoJ(0) = Ernr, | Volog(me(T ZR (S¢,a¢)]

Policy Gradient (2)

Vo log(ms(7)) = Vi log HPsi'ﬁl si”,ut) o (ug”|s”)
| R ———

dynamics model policy

= Vo ZlogP st+1 ?),ug‘) —I—Zlogwe)|s

H
=V Y logm(uy”|s;”)
t=0

(ug”]s$)

no dynamics model required!!

Mm

t=0

Policy Gradient (3)

o This gives us a gradient as follows:

VoJ(0) = Errry[(Y Volog(mg(ails:)) () R(si,ar))]

© We can use a sample average as an unbiased estlmator

N
VoJ(0) =]ifz ng log(mg(at|st))) ZR S, Q)

=1 t=1

Policy Gradient (4)

o Putting it all together:
o 1) Collect {71, T2, ..., TN } by running policy in simulator

o 2) Compute gradient according to formula
N

VoJ(0) = ;IS‘ YVQ log(mg(a¢|st))) ZR (S¢,at))

1=1 t=1

o 3) Update parameters through gradient ascent
0 =0+ aVyJ(9)

Policy Gradient (5)

O This will not work very well. There are lots of add-ons to get this
to work:

O Causality

O Advantage Functions

O Actor-Critic

O Surrogate Objectives + Clipping

O Still incredibly sensitive to wacky things like network
initialization with all of these and more

What algorithm should I use?

O Real world:
O Most problems: Iterative LOR

O Very complex problem: model-based RL - learn a dynamics
model (maybe a deep network) and then use TrajOpt

O Simulated:
O Data is very easy to collect: PPO

O Data is harder to collect: Soft Actor-Critic

Inverse Reinforcement Learning

O Reinforcement Learning: find actions that maximize
reward

O Inverse Reinforcement Learning: find reward function that
would have made actions taken optimal

O Standard Recipe: write R(s) = w'6(sz, az) with fixed
features and find w s.t. the reward is greater than for
any other set of state-action pairs (effectively max-
margin SVM).

o
0... @ O

Fixing Traditional IRL

O Will match expert feature counts at convergence
O Requires demonstrator to be optimal at each time step

O Unfortunately, this is really hard to ensure in practice, especially if your
data comes from people

O More reasonable assumption from cognitive science: Boltzmann

Rationality:
1
O IP}((SMCLZ)‘R) — Zexp{aQ*(SiaaiaR)}
O Here, expert is exponentially more likely to take an action with a
higher Q value rather than having all probability mass on a single

action

O Has the same expected feature counts as idealized distribution so fits
into the above framework

MaxEnt Inverse Reinforcement Learning

O Remember that a Q value is a sum of rewards, each of
which follows the linear form we had before

O We apply Bayesian Inference to recover reward function:

n

P(r|R) = | [P((si,a0)|R)

1=1
B(r|R) = Zexpla Y] Q" (s ai, B)}
1=1

P(R|r) = P(T@H;(R) _ %exp{a > @ (s s, R)YP(R)

O We can then maximize this objective w.r.t w via gradients

Popular RL Packages

pip install tensorflow

pip install gym
git clone https://git

git clone https://git
softlearning.git

cd baselines
pip install -e
cd ../softlearning

pip install -e

U

U

0.com/openai/baselines.git

0.com/rail-berkeley/

Resources

O Pretty much everything you see here was shamelessly copied from one of:
O Anca’s CS 188 Slides
O Including the slide template
O Pieter’s CS 287 Slides
O Sergey’s CS 285 (CS 294-112) Slides

O Claire’s EE 221a Notes

O Best place to learn more online: https:/ /spinningup.openai.com/en/latest/

O Best classes to learn more in real life: Above Professors’ grad classes

https://spinningup.openai.com/en/latest/

