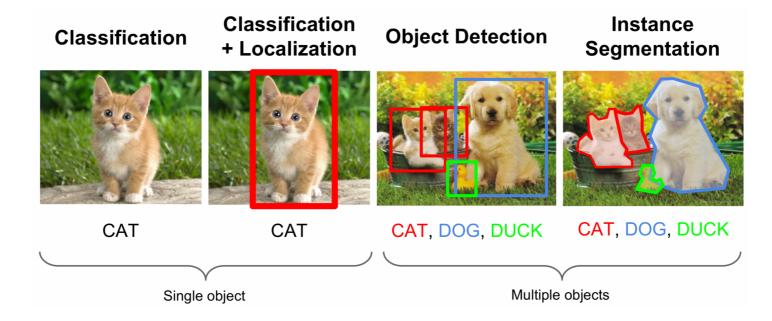
Intro to Reinforcement Learning Gokul Swamy

Supervised Learning

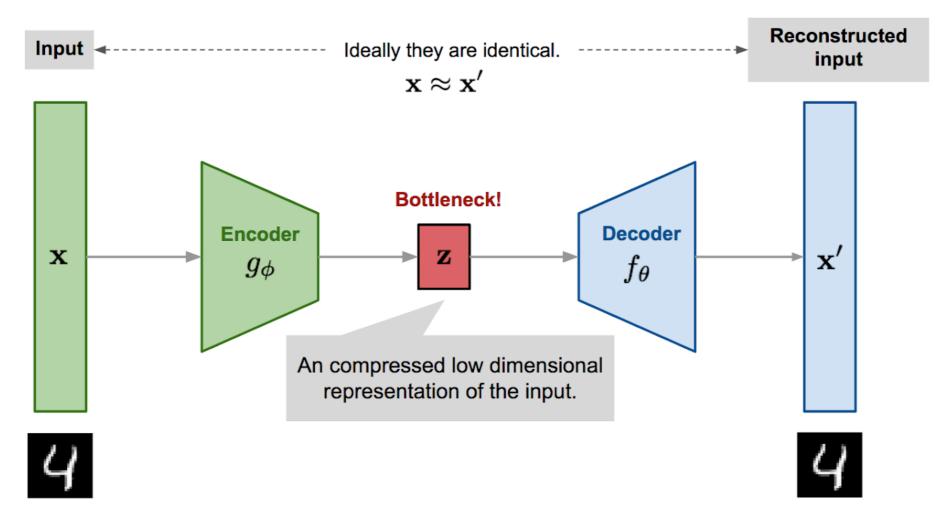
• Learn some sort of mapping from input to output that minimizes some notion of error

O Learn how to take tests well

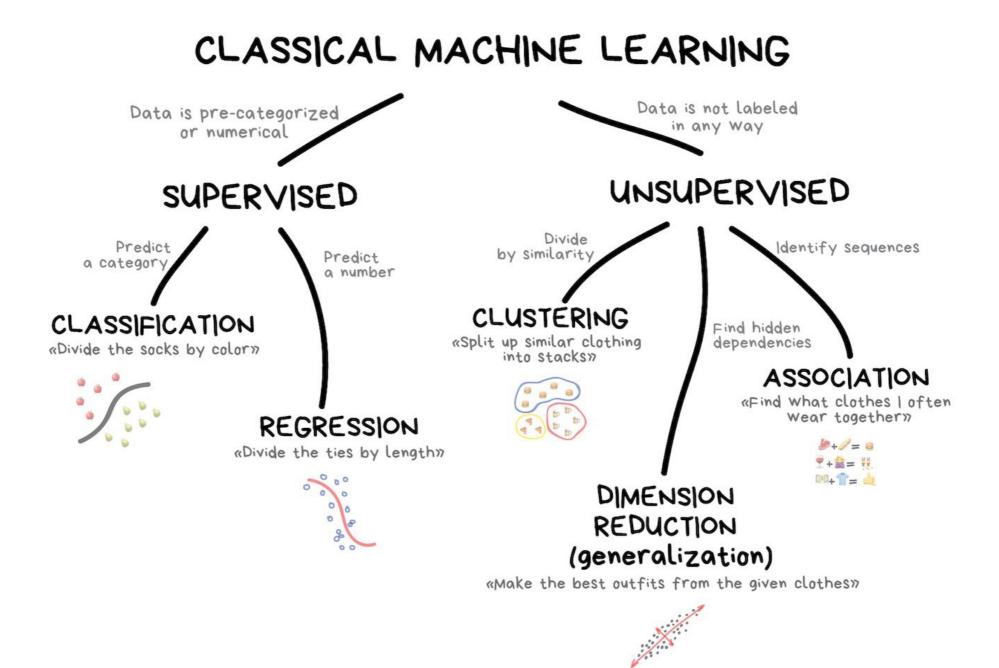


Unsupervised Learning

- O Learn patterns to make downstream tasks easier
 - Clustering, auto-encoders, density models

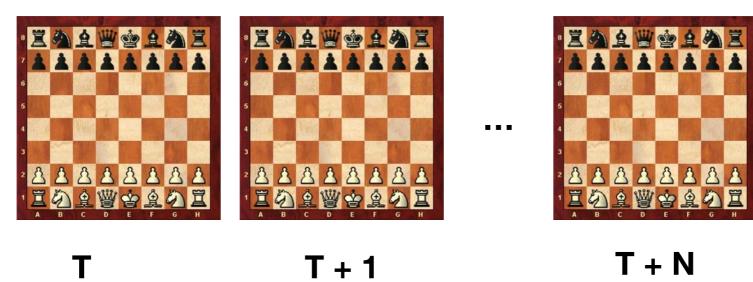


So far ...



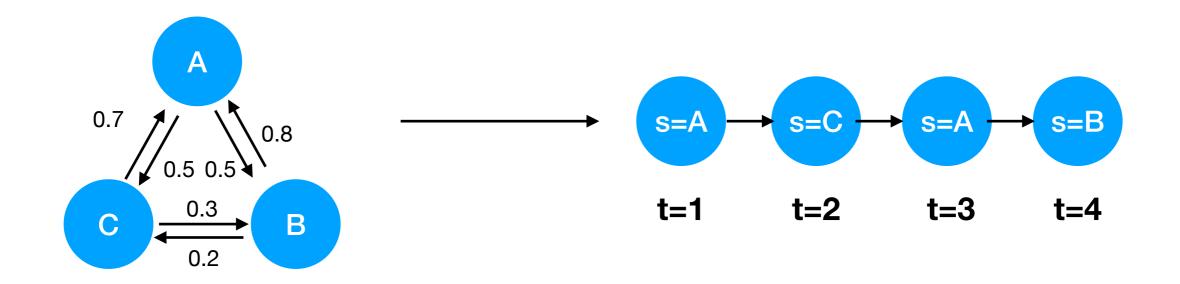
What's missing here?

- Limited notion of one decision influencing the next input
 - Consider executing multi-step plans in chess
- Limited notions of dealing with uncertainty
 - How do you learn if there isn't a precise label for what you're doing?



Introducing State: Markov Chains

- Model of a random process where at each timestep, the value of the random variable transitions
 - We're only going to consider discrete-time Markov Chains
- (First Order) Markov Property: The future is independent of the past conditioned on the present



Introducing Agency: Markov Decision Processes

Definitions

Markov decision process

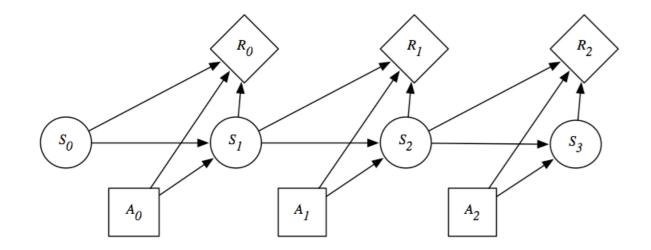
 $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, r\}$

 \mathcal{S} – state space states $s \in \mathcal{S}$ (discrete or continuous)

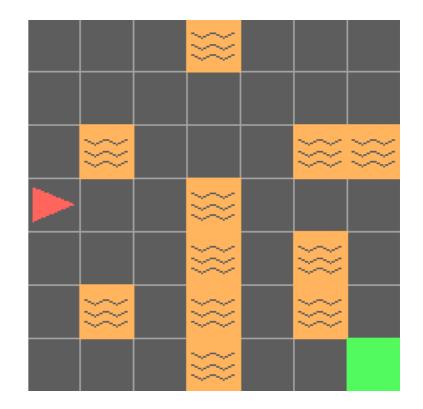
 \mathcal{A} – action space actions $a \in \mathcal{A}$ (discrete or continuous)

- \mathcal{T} transition operator (now a tensor!) T(s, a, s') = P(s' | s, a)
- r reward function
- $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$

 $r(s_t, a_t)$ – reward



Example:

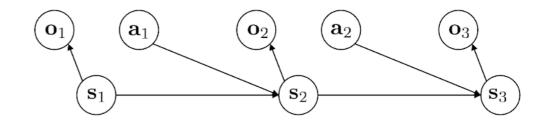


Introducing Partial Observability: POMDPs

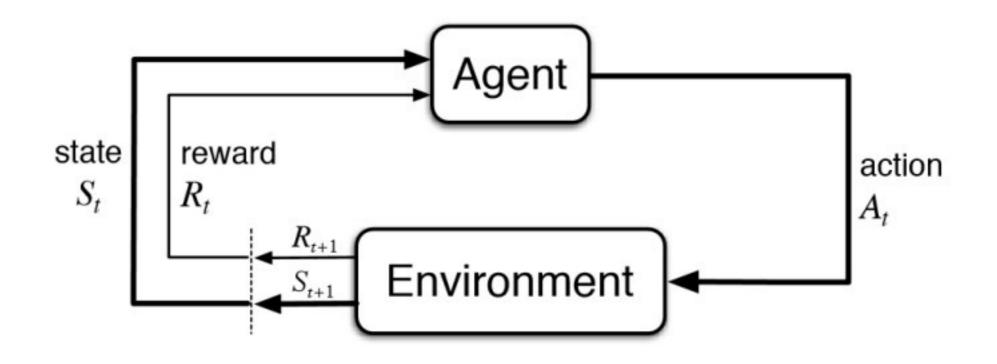
Definitions

partially observed Markov decision process $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{E}, r\}$

- S state space states $s \in S$ (discrete or continuous)
- \mathcal{A} action space actions $a \in \mathcal{A}$ (discrete or continuous)
- \mathcal{O} observation space observations $o \in \mathcal{O}$ (discrete or continuous)
- \mathcal{T} transition operator (like before)
- \mathcal{E} emission probability $p(o_t|s_t)$
- r reward function $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$



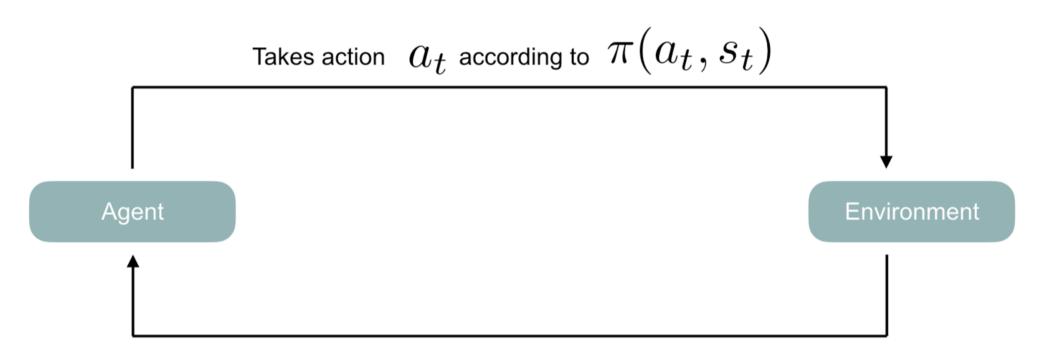
RL Framework



RL Definitions

- **Environment**: The world in which our problem is set up. The environment updates according to **dynamics**
- **State**: All the aspects of the environment at a particular time that are relevant to the problem we're trying to solve
- Agent: Can take actions to influence the state of the world
- **Policy**: How our agent decides to act given the state of the world. A distribution over actions conditioned on state.
- **Trajectory**: List of state-action tuples generated by our interaction with env.

RL Framework Formalized



Give us $\,s_{t+1}\,$ by sampling from $\,T(s_{t+1}|s_t,a_t)\,$ and $\,r=R(s_t,a_t)\,$

The Reinforcement Learning Objective

Maximize expected utility!

$$\underline{p_{\theta}(\mathbf{s}_{1}, \mathbf{a}_{1}, \dots, \mathbf{s}_{T}, \mathbf{a}_{T})}_{p_{\theta}(\tau)} = p(\mathbf{s}_{1}) \prod_{t=1}^{T} \frac{\pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) p(\mathbf{s}_{t+1} | \mathbf{s}_{t}, \mathbf{a}_{t})}{\text{Markov chain on } (\mathbf{s}, \mathbf{a})}$$
$$\theta^{\star} = \arg \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

Value and Q Functions

• Discounted sum of future rewards:

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \gamma^3 r_{t+4} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

• The average of this defines the "value" of a state:

$$V^{\pi}(s) = \mathbb{E}_{\pi} \big[R_t | s_t = s \big]$$

• We can break this down even further to actions:

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi} \left[R_t | s_t = s, a_t = a \right]$$

Combining Value and Q Functions

• Off Policy:

$$V^{\pi}(s) = \max_{a} Q(s, a)$$

O On Policy:

$$V^{\pi}(s) = E_{\pi}[Q(s,a)]$$

• Advantage Function: $A^{\pi}(s, a) = Q^{\pi}(s, a) - V^{\pi}(s)$

Known T/R + Discrete States: Policy Iteration

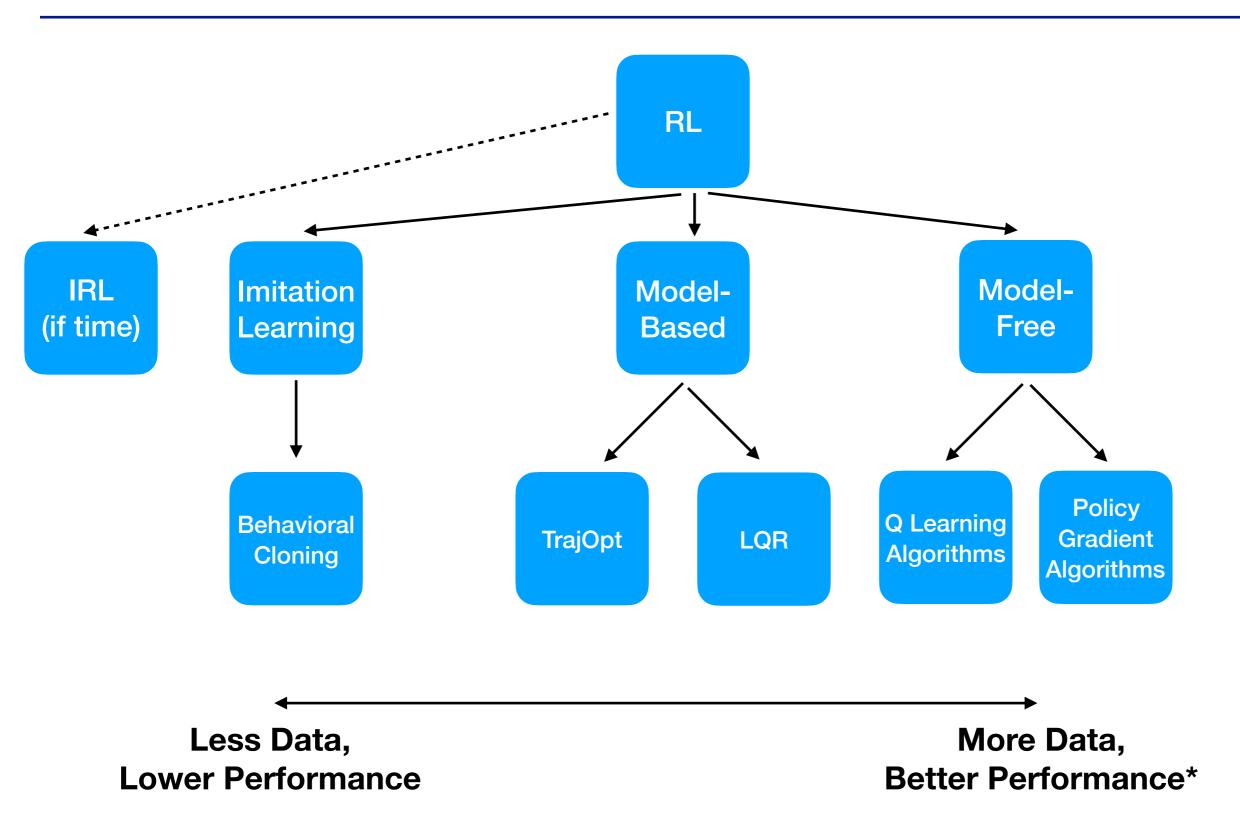
Evaluation: For fixed current policy π, find values with policy evaluation:
 Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

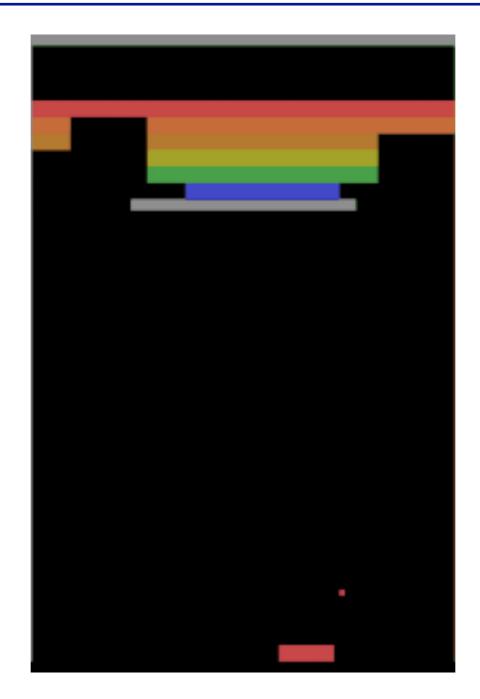
Improvement: For fixed values, get a better policy using policy extraction
 One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Taxonomy of RL Algorithms



Running Example: Breakout

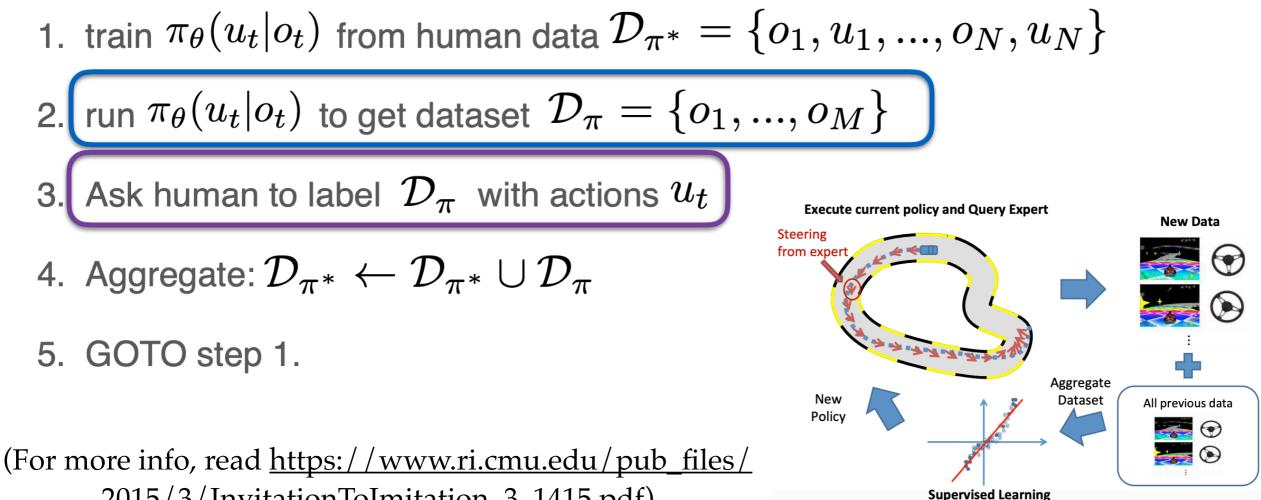


Imitation Learning: Behavioral Cloning

- Given demonstrations of a person performing a task, learn a function that maps from states to their actions
 - This is a completely supervised approach to learning a policy
 - Does not generalize well: imagine trying to drive a car

$$loss = \frac{1}{N} \sum_{i} (\pi(s_i) - a_i)^2$$

Imitation Learning: DAGGER



2015/3/InvitationToImitation_3_1415.pdf)

Model-Based RL (1)

- Learn a function that captures dynamics / rewards of system
- Then, use classical planning methods to optimize your reward function

model-based reinforcement learning version 1.0:

1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$

- 2. learn dynamics model $f(\mathbf{s}, \mathbf{a})$ to minimize $\sum_i ||f(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}'_i||^2$
- 3. plan through $f(\mathbf{s}, \mathbf{a})$ to choose actions Why is f hard to learn?
- 4. execute those actions and add the resulting data $\{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_j\}$ to \mathcal{D}

Model-Based RL (2)

 What if you make an error while predicting what's going to happen?

• Replan at every timestep (Model Predictive Control)

model-based reinforcement learning version 1.5:

- 1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$
- 2. learn dynamics model $f(\mathbf{s}, \mathbf{a})$ to minimize $\sum_i ||f(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}'_i||^2$
- 3. plan through $f(\mathbf{s}, \mathbf{a})$ to choose actions

every N steps

- 4. execute the first planned action, observe resulting state \mathbf{s}' (MPC)
- 5. append $(\mathbf{s}, \mathbf{a}, \mathbf{s}')$ to dataset \mathcal{D}

Planning: iLQR

- Approximate dynamics as linear function
- Approximate cost (negative reward) as quadratic function
- Then, there exists an easily computable optimal set of controls (actions)

$$\begin{aligned} x_{t+1} &= Ax_t + Bu_t, \ t \in \{0, 1, \dots, N\} \\ x_0 &= x^{init} \\ J(U, x_0) &= \sum_{\tau=0}^{N-1} \left(x_{\tau}^T Q x_{\tau} + u_{\tau}^T R u_{\tau} \right) + x_N^T Q_f x_N \\ u_t^* &= -K_t z \\ P_t &= Q + K_t^T R K_t + (A - B K_t)^T P_{t+1} (A - B K_t), \ P_N = Q_f \\ K_t &= (R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A. \end{aligned}$$

Planning: TrajOpt

- Turn planning into constrained optimization problem
 - Cost: Learned reward function
 - Constraints: Learned dynamics
- Use convex approximation of above to solve in real-time
 - Expand and shrink trust region based on how accurate approximation is

Planning: TrajOpt

1: f	for PenaltyIteration $= 1, 2, \ldots$ do
2:	for ConvexifyIteration $= 1, 2, \ldots$ do
3:	$\tilde{f}, \tilde{g}, \tilde{h} = ext{ConvexifyProblem}(f, g, h)$
4:	for TrustRegionIteration = $1, 2,$ do n_{eq}
5:	$\mathbf{x} \leftarrow \underset{\mathbf{x}}{\operatorname{argmin}} \tilde{f}(\mathbf{x}) + \mu \sum_{i=1}^{n_{ineq}} \tilde{g}_i(\mathbf{x}) ^+ + \mu \sum_{i=1}^{n_{eq}} \tilde{h}_i(\mathbf{x}) $ subject to trust region and linear constraints
٢.	
6:	if TrueImprove / ModelImprove > c then
7:	$s \leftarrow \tau^+ * s$ \triangleright Expand trust region
8:	break
9:	else
10:	$s \leftarrow \tau^- * s$ > Shrink trust region
11:	if $s < \text{xtol}$ then
12:	goto 15
13:	if converged according to tolerances xtol or ftol then
14:	break
15:	if constraints satisfied to tolerance ctol then
16:	break
17:	else
18:	$\mu \leftarrow k * \mu$

Model-Free RL

- Instead of learning the dynamics, why don't we learn just the policy
 - In some sense, this is all we're really after
 - More compact representation of correct action to take
 - Sometimes, a full dynamics model is unnecessary and harder to learn (extraneous entries in state)
 - More info: <u>https://arxiv.org/pdf/1805.00909.pdf</u>

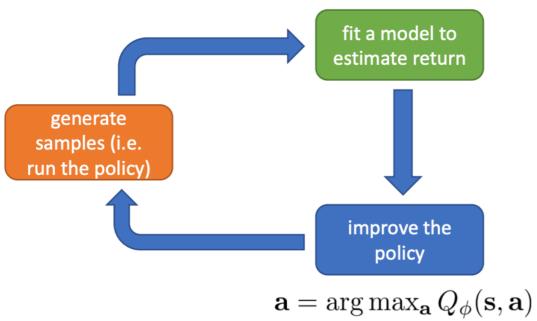
Q Learning

- With the correct Q function, policy is just argmax over actions
 - O Off-Policy!

Tabular Q-Learning

DQNish*

 $Q_{\phi}(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}', \mathbf{a}')$



online Q iteration algorithm:

▶ 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$

2.
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

*= hacks like target network to work

Soft Actor-Critic (Extra)

Soft Policy Iteration

1. Soft policy evaluation:

Fix policy, apply soft Bellman backup until converges:

$$Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \mathbb{E}_{\mathbf{s}' \sim p_{\mathbf{s}}, \mathbf{a}' \sim \pi} \left[Q(\mathbf{s}', \mathbf{a}') - \log \pi(\mathbf{a}' | \mathbf{s}') \right]$$

This converges to Q^{π} .

2. Soft policy improvement:

Update the policy through information projection:

$$\pi_{\text{new}} = \arg\min_{\pi'} \mathcal{D}_{\text{KL}} \left(\pi'(\cdot | \mathbf{s}) \left\| \frac{1}{Z} \exp Q^{\pi_{\text{old}}}(\mathbf{s}, \cdot) \right) \right)$$

For the new policy, we have $Q^{\pi^{\text{new}}} \ge Q^{\pi}$.

3. Repeat until convergence

Soft Actor-Critic

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. *Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor.* ICML, 2018.

1. Take one stochastic gradient step to minimize soft Bellman residual

- 2. Take one stochastic gradient step to minimize the KL divergence
- 3. Execute one action in the environment and repeat

Policy Gradient (1)

- What if we try to directly optimize RL objective through gradient descent instead of learning a Q function?
 - Why might this be a good idea?

• First, lets abbreviate our objective as

$$J(\theta) = E_{\tau \sim \pi_{\theta}} [\sum_{t=0}^{T} R(s_t, a_t)]$$

• Then, we can substitute and differentiate to get us

$$\pi_{\theta}(\tau) \nabla_{\theta} \log(\pi_{\theta}(\tau)) = \nabla_{\theta} \pi_{\theta}(\tau)$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim \pi_{\theta}} [\nabla_{\theta} \log(\pi_{\theta}(\tau)) \sum_{t=0}^{T} R(s_t, a_t)]$$

Policy Gradient (2)

$$\begin{split} \nabla_{\theta} \log(\pi_{\theta}(\tau)) &= \nabla_{\theta} \log \left[\prod_{t=0}^{H} \underbrace{P(s_{t+1}^{(i)} | s_{t}^{(i)}, u_{t}^{(i)})}_{\text{dynamics model}} \cdot \underbrace{\pi_{\theta}(u_{t}^{(i)} | s_{t}^{(i)})}_{\text{policy}} \right] \\ &= \nabla_{\theta} \left[\sum_{t=0}^{H} \log P(s_{t+1}^{(i)} | s_{t}^{(i)}, u_{t}^{(i)}) + \sum_{t=0}^{H} \log \pi_{\theta}(u_{t}^{(i)} | s_{t}^{(i)}) \right] \\ &= \nabla_{\theta} \sum_{t=0}^{H} \log \pi_{\theta}(u_{t}^{(i)} | s_{t}^{(i)}) \\ &= \sum_{t=0}^{H} \underbrace{\sum_{t=0}^{H} \log \pi_{\theta}(u_{t}^{(i)} | s_{t}^{(i)})}_{\text{dynamics model required!!}} \end{split}$$

Policy Gradient (3)

• This gives us a gradient as follows: $\nabla_{\theta} J(\theta) = E_{\tau \sim \pi_{\theta}} [(\sum_{t=1}^{T} \nabla_{\theta} \log(\pi_{\theta}(a_{t}|s_{t}))(\sum_{t=1}^{T} R(s_{t}, a_{t}))]$ • We can use a sample average as an unbiased estimator $\nabla_{\theta} J(\theta) = \frac{1}{N} \sum_{i=1}^{N} ((\sum_{t=1}^{T} \nabla_{\theta} \log(\pi_{\theta}(a_{t}|s_{t})))(\sum_{t=1}^{T} R(s_{t}, a_{t})))$

Policy Gradient (4)

• Putting it all together:

• 1) Collect $\{\tau_1, \tau_2, ..., \tau_N\}$ by running policy in simulator

• 2) Compute gradient according to formula

$$\nabla_{\theta} J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(\left(\sum_{t=1}^{T} \nabla_{\theta} \log(\pi_{\theta}(a_t | s_t)) \right) \left(\sum_{t=1}^{T} R(s_t, a_t) \right) \right)$$

• 3) Update parameters through gradient ascent

$$\theta' = \theta + \alpha \nabla_{\theta} J(\theta)$$

Policy Gradient (5)

- This will not work very well. There are lots of add-ons to get this to work:
 - Causality
 - O Advantage Functions
 - Actor-Critic
 - Surrogate Objectives + Clipping
- Still incredibly sensitive to wacky things like network initialization with all of these and more

What algorithm should I use?

• Real world:

• Most problems: Iterative LQR

 Very complex problem: model-based RL - learn a dynamics model (maybe a deep network) and then use TrajOpt

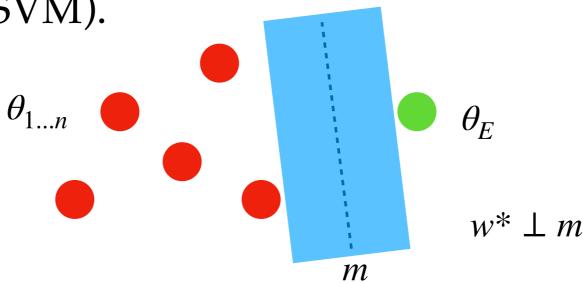
• Simulated:

• Data is very easy to collect: PPO

• Data is harder to collect: Soft Actor-Critic

Inverse Reinforcement Learning

- Reinforcement Learning: find actions that maximize reward
- Inverse Reinforcement Learning: find reward function that would have made actions taken optimal
 - Standard Recipe: write $R(s) = w^T \theta(s_E, a_E)$ with fixed features and find w s.t. the reward is greater than for any other set of state-action pairs (effectively maxmargin SVM).



Fixing Traditional IRL

- Will match expert feature counts at convergence
- O Requires demonstrator to be optimal at each time step
- Unfortunately, this is really hard to ensure in practice, especially if your data comes from people
- More reasonable assumption from cognitive science: Boltzmann Rationality:

$$\bigcirc \mathbb{P}((s_i, a_i)|R) = \frac{1}{Z_i} \exp\{\alpha Q^*(s_i, a_i, R)\}$$

- Here, expert is exponentially more likely to take an action with a higher *Q* value rather than having all probability mass on a single action
- Has the same expected feature counts as idealized distribution so fits into the above framework

MaxEnt Inverse Reinforcement Learning

Remember that a Q value is a sum of rewards, each of which follows the linear form we had before
We apply Bayesian Inference to recover reward function:

$$\mathbb{P}(\tau|R) = \prod_{i=1}^{n} \mathbb{P}((s_i, a_i)|R)$$

$$\mathbb{P}(\tau|R) = \frac{1}{Z} \exp\{\alpha \sum_{i=1}^{n} Q^*(s_i, a_i, R)\}$$

$$\mathbb{P}(R|\tau) = \frac{\mathbb{P}(\tau|R)\mathbb{P}(R)}{\mathbb{P}(\tau)} = \frac{1}{Z} \exp\{\alpha \sum_{i=1}^{n} Q^*(s_i, a_i, R)\}\mathbb{P}(R)$$

• We can then maximize this objective w.r.t *w* via gradients

Popular RL Packages

- pip install tensorflow
- pip install gym
- git clone https://github.com/openai/baselines.git
- git clone https://github.com/rail-berkeley/
 softlearning.git
- cd baselines
- pip install -e .
- cd ../softlearning
- pip install -e .

Resources

• Pretty much everything you see here was shamelessly copied from one of:

O Anca's CS 188 Slides

○ Including the slide template

○ Pieter's CS 287 Slides

○ Sergey's CS 285 (CS 294-112) Slides

○ Claire's EE 221a Notes

• Best place to learn more online: <u>https://spinningup.openai.com/en/latest/</u>

• Best classes to learn more in real life: Above Professors' grad classes