
Intro to Reinforcement Learning
Gokul Swamy

Supervised Learning

○ Learn some sort of mapping from input to output that
minimizes some notion of error

○ Learn how to take tests well

Unsupervised Learning

○ Learn patterns to make downstream tasks easier

○ Clustering, auto-encoders, density models

So far …

What’s missing here?

• Limited notion of one decision influencing the next input

• Consider executing multi-step plans in chess

• Limited notions of dealing with uncertainty

• How do you learn if there isn’t a precise label for what
you’re doing?

T T + 1

…

T + N

Introducing State: Markov Chains

○Model of a random process where at each timestep, the value of the random
variable transitions

○We’re only going to consider discrete-time Markov Chains

○ (First Order) Markov Property: The future is independent of the past
conditioned on the present

A

BC

0.7

0.3
0.5 0.5

0.8

0.2

s=A s=C s=A s=B

t=1 t=2 t=3 t=4

Introducing Agency:
Markov Decision Processes

Example:

T(s, a, s′�) = P(s′�|s, a)

Introducing Partial Observability: POMDPs

RL Framework

RL Definitions

○ Environment: The world in which our problem is set up. The
environment updates according to dynamics

○ State: All the aspects of the environment at a particular time that
are relevant to the problem we’re trying to solve

○ Agent: Can take actions to influence the state of the world

○ Policy: How our agent decides to act given the state of the world.
A distribution over actions conditioned on state.

○ Trajectory: List of state-action tuples generated by our interaction
with env.

RL Framework Formalized

The Reinforcement Learning Objective

Maximize expected utility!

Value and Q Functions

○ Discounted sum of future rewards:

○ The average of this defines the “value” of a state:

○We can break this down even further to actions:

Combining Value and Q Functions

○ Off Policy:

○ On Policy:

○ Advantage Function:

Vπ(s) = max
a

Q(s, a)

Vπ(s) = Eπ[Q(s, a)]

Aπ(s, a) = Qπ(s, a) − Vπ(s)

Known T/R + Discrete States: Policy Iteration

Taxonomy of RL Algorithms

RL

Imitation
Learning

Model-
Free

Model-
Based

Behavioral
Cloning

Q Learning
Algorithms

Policy
Gradient

Algorithms
TrajOpt

Less Data,
Lower Performance

More Data,
Better Performance*

LQR

IRL
(if time)

Running Example: Breakout

Imitation Learning: Behavioral Cloning

○ Given demonstrations of a person performing a task, learn
a function that maps from states to their actions

○ This is a completely supervised approach to learning a
policy

○ Does not generalize well: imagine trying to drive a car

loss =
1
N ∑

i

(π(si) − ai)2

Imitation Learning: DAGGER

(For more info, read https://www.ri.cmu.edu/pub_files/
2015/3/InvitationToImitation_3_1415.pdf)

https://www.ri.cmu.edu/pub_files/2015/3/InvitationToImitation_3_1415.pdf
https://www.ri.cmu.edu/pub_files/2015/3/InvitationToImitation_3_1415.pdf
https://www.ri.cmu.edu/pub_files/2015/3/InvitationToImitation_3_1415.pdf

Model-Based RL (1)

○ Learn a function that captures dynamics / rewards of
system

○ Then, use classical planning methods to optimize your
reward function

Why is f hard to learn?

Model-Based RL (2)

○What if you make an error while predicting what’s going
to happen?

○ Replan at every timestep (Model Predictive Control)

Planning: iLQR

○ Approximate dynamics as linear function

○ Approximate cost (negative reward) as quadratic function

○ Then, there exists an easily computable optimal set of
controls (actions)

Planning: TrajOpt

○ Turn planning into constrained optimization problem

○ Cost: Learned reward function

○ Constraints: Learned dynamics

○ Use convex approximation of above to solve in real-time

○ Expand and shrink trust region based on how accurate
approximation is

Planning: TrajOpt

Model-Free RL

○ Instead of learning the dynamics, why don’t we learn just
the policy

○ In some sense, this is all we’re really after

○More compact representation of correct action to take

○ Sometimes, a full dynamics model is unnecessary and
harder to learn (extraneous entries in state)

○More info: https://arxiv.org/pdf/1805.00909.pdf

https://arxiv.org/pdf/1805.00909.pdf

Q Learning

○With the correct Q function, policy is just argmax over
actions

○ Off-Policy!
Tabular Q-Learning DQNish*

*= hacks like target network to work

Soft Actor-Critic (Extra)

Policy Gradient (1)

○What if we try to directly optimize RL objective through
gradient descent instead of learning a Q function?

○Why might this be a good idea?

Policy Gradient (2)

Policy Gradient (3)

Policy Gradient (4)

Policy Gradient (5)

○ This will not work very well. There are lots of add-ons to get this
to work:

○ Causality

○ Advantage Functions

○ Actor-Critic

○ Surrogate Objectives + Clipping

○ Still incredibly sensitive to wacky things like network
initialization with all of these and more

What algorithm should I use?

○ Real world:

○Most problems: Iterative LQR

○ Very complex problem: model-based RL - learn a dynamics
model (maybe a deep network) and then use TrajOpt

○ Simulated:

○ Data is very easy to collect: PPO

○ Data is harder to collect: Soft Actor-Critic

Inverse Reinforcement Learning

○ Reinforcement Learning: find actions that maximize
reward

○ Inverse Reinforcement Learning: find reward function that
would have made actions taken optimal

○ Standard Recipe: write with fixed
features and find w s.t. the reward is greater than for
any other set of state-action pairs (effectively max-
margin SVM).

R(s) = wTθ(sE, aE)

θ1...n θE

w* ⊥ m
m

Fixing Traditional IRL

○Will match expert feature counts at convergence

○ Requires demonstrator to be optimal at each time step

○ Unfortunately, this is really hard to ensure in practice, especially if your
data comes from people

○More reasonable assumption from cognitive science: Boltzmann
Rationality:

○

○ Here, expert is exponentially more likely to take an action with a
higher Q value rather than having all probability mass on a single
action

○ Has the same expected feature counts as idealized distribution so fits
into the above framework

MaxEnt Inverse Reinforcement Learning

○ Remember that a Q value is a sum of rewards, each of
which follows the linear form we had before

○We apply Bayesian Inference to recover reward function:

○We can then maximize this objective w.r.t w via gradients

Popular RL Packages

pip install tensorflow

pip install gym

git clone https://github.com/openai/baselines.git

git clone https://github.com/rail-berkeley/
softlearning.git

cd baselines

pip install -e .

cd ../softlearning

pip install -e .

Resources

○ Pretty much everything you see here was shamelessly copied from one of:

○ Anca’s CS 188 Slides

○ Including the slide template

○ Pieter’s CS 287 Slides

○ Sergey’s CS 285 (CS 294-112) Slides

○ Claire’s EE 221a Notes

○ Best place to learn more online: https://spinningup.openai.com/en/latest/

○ Best classes to learn more in real life: Above Professors’ grad classes

https://spinningup.openai.com/en/latest/

