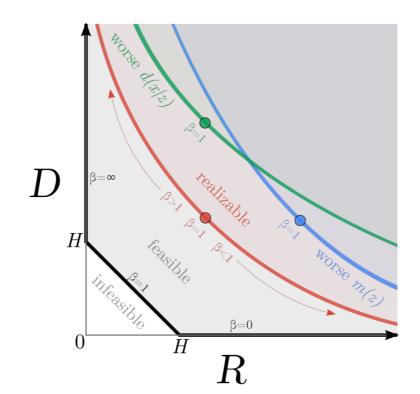
Information Theory for Deep Latent Variable Models Gokul Swamy

Fixing a Broken ELBO

- Today, we're going to be talking about <u>https://arxiv.org/</u> <u>pdf/1711.00464.pdf</u>
- **Key Insight**: We can use rate and distortion to define a Pareto-optimal frontier for latent variable models. We can then select from this frontier based on our application.



Information Theory

- *Information Theory* is a science of inequalities
- The goal is to define bounds on how well we can do, not figure out how to achieve them
 - That is *coding theory*, which is an almost orthogonal field
- Shannon's *A Mathematical Theory of Communication* outlines bounds for 2 problems:
 - **O** Reliable Communication
 - **O Lossy Compression**
- Most results will be stated without proof today, read Cover & Thomas for justification

Information Measures

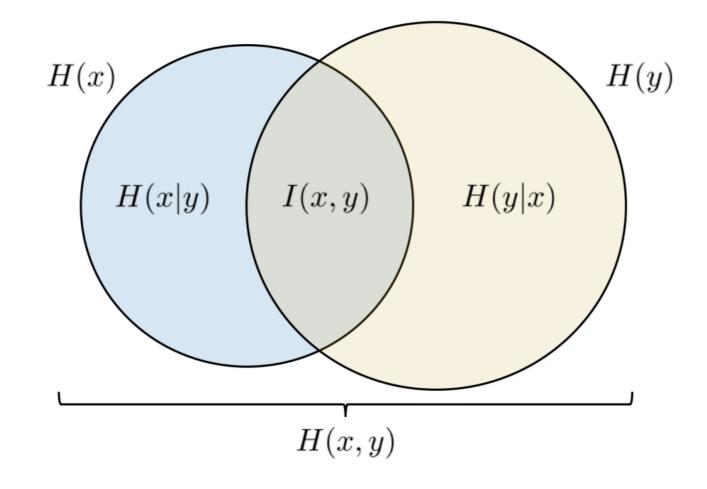
• These quantities will keep popping up so let's name them

• Entropy:
$$H(X) = \sum_{x \in X} p_X(x) * \log \frac{1}{p_X(x)} = E[\log \frac{1}{p_X(x)}]$$

• Conditional Entropy: $H(X|Y) = E_{X,Y}[\log \frac{1}{p_{X|Y}(x)}] = H(X,Y) - H(Y)$

- O Mutual Information: I(X; Y) = I(Y; X) = H(X) H(X|Y) = H(Y) H(Y|X)I(X; Y) = H(X) + H(Y) - H(X, Y)O Relative Entropy: $D_{KL}(p||q) = \sum_{i} p_i * \log \frac{p_i}{q_i} \neq D_{KL}(q||p) \ge -\log 1 = 0$
 - Not a metric

Information Diagram



What is Entropy?

- Warm, fuzzy intuition is that it measures the randomness or unpredictability of a distribution.
- Minimum expected description length for a random variable
 - Achievable-ish using *Huffman Coding*: start out with singletons and construct tree by combining two nodes with lowest probability.

20

['f'|3

'h'2 's'2

['a'|4]

(2)

't'2 'm'2

['i']2]

(2)

['e'|4]

['n'|2]

• Used in RL to incentivize exploration

Maximum Entropy

• What is the maximum entropy distribution over alphabet X?

O Uniform:
$$0 \le D(p||u) \equiv \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{u(x)} = -H(X) + \log |\mathcal{X}|$$

• What is the maximum entropy distribution given a specific mean?

$$\bigcirc$$
 Exponential $f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0, \\ 0 & x < 0. \end{cases}$

- What is the maximum entropy distribution given a specific variance?
 - O Gaussian
 - This is why the Central Limit Thm. Holds
 - Also why it is useful for physical noise $(\frac{1}{2}mv^2)$

Inverse Reinforcement Learning

- Reinforcement Learning: find actions that maximize reward
- Inverse Reinforcement Learning: find reward function that would have made actions taken optimal
 - Standard Recipe: write $R(s) = w^T \theta(s)$ and maximize over w
 - Guarantees match in expected feature counts after convergence
 - This requires optimality of demonstrator

MaxEnt Inverse Reinforcement Learning

 To relax this constraint, why don't we assume people behave as randomly as possible while still having the same expected feature counts (first moment constraint)
O Boltzmann Rationality:

$$\mathbb{P}((s_i, a_i)|R) = \frac{1}{Z_i} \exp\{\alpha Q^*(s_i, a_i, R)\}$$

• Then, we apply Bayesian Inference to recover reward function

$$\mathbb{P}(\tau|R) = \prod_{i=1}^{n} \mathbb{P}((s_i, a_i)|R) \quad \mathbb{P}(\tau|R) = \frac{1}{Z} \exp\{\alpha \sum_{i=1}^{n} Q^*(s_i, a_i, R)\}$$
$$\mathbb{P}(R|\tau) = \frac{\mathbb{P}(\tau|R)\mathbb{P}(R)}{\mathbb{P}(\tau)} = \frac{1}{Z} \exp\{\alpha \sum_{i=1}^{n} Q^*(s_i, a_i, R)\}\mathbb{P}(R)$$

Data Processing Inequality

• Assume we have 3 variables that form a Markov Chain. Then,

$X \to Y \to Z \implies I(X;Z) \leq I(X;Y)$

 Now, consider Y being your latent representation. What does this imply?

Reliable Communication

• Shannon's Block Diagram:

 $\operatorname{Message} \longrightarrow \operatorname{Encoder} \xrightarrow{\operatorname{signal}} \operatorname{Channel} \xrightarrow[\operatorname{signal}]{\operatorname{corrupted}} \operatorname{Decoder} \longrightarrow \operatorname{Message}$

• Let **rate** of (M messages, n length)-block code be defined as $R \equiv \frac{1}{n} \log M$

• Source Coding Theorem:

 $C \equiv \sup\{R | R \text{ is achievable}\}\$

$$C = \sup_{P_X} I(X;Y)$$

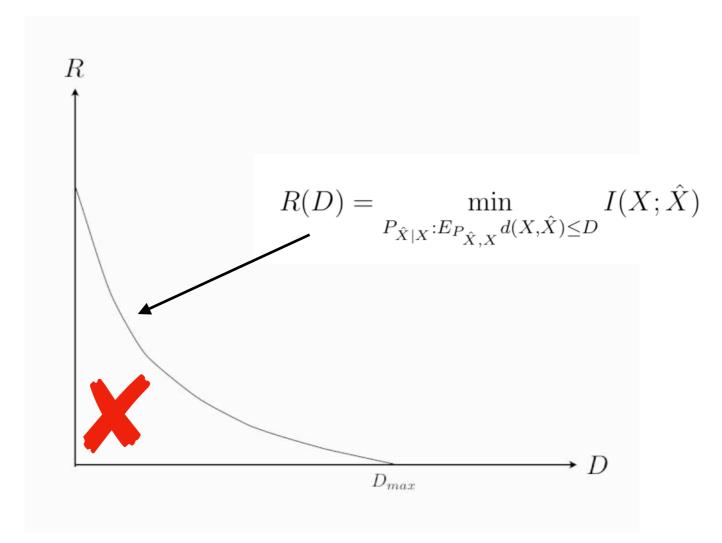
Lossy Compression

- We wanted perfect reconstruction before what if we relax that constraint?
- We tolerate some level of distortion now. For example, Hamming distance: $d(X, \hat{X}) = (X - \hat{X})^2$
- Let f be our encoder, g be our decoder. Then, the expected distortion of this pair is $D = \sum_{x_n} p(x^n) \cdot d(x^n \cdot g_n(f_n(x^n)))$
- Then, the rate-distortion theorem tells us that the lowest rate (best compression) we can send at is:

$$R(D) = \min_{\substack{P_{\hat{X}|X}: E_{P_{\hat{X},X}} d(X, \hat{X}) \le D}} I(X; \hat{X})$$

Rate-Distortion Functions

• The rate-distortion defines the Pareto-optimal frontier for the problem:

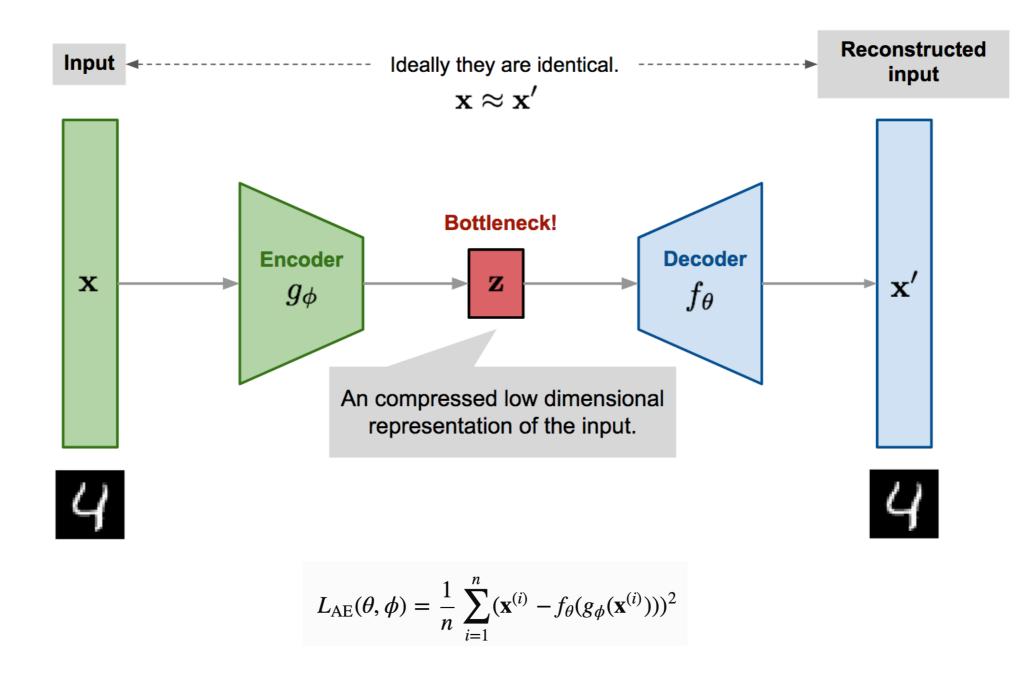


Source Coding vs. Rate-Distortion

- Source coding is effectively a *sphere packing problem* how can we define a sphere around each symbol such that we have the minimum overlap (misinterpretations)
- Rate distortion is effectively a covering problem how can we waste as little space (representations) as possible so we can compress as effectively as possible
- These are dual problems of each other

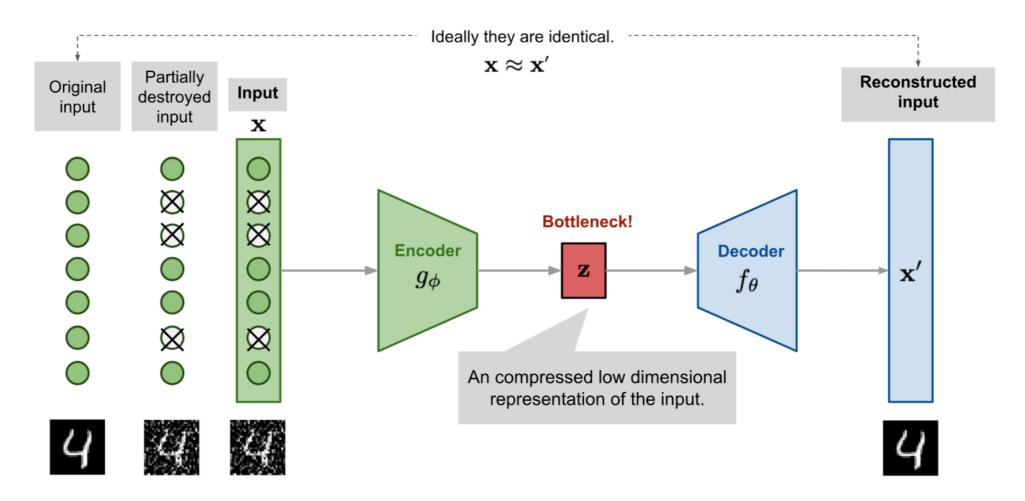
Vanilla Autoencoders

○ "Unsupervised"



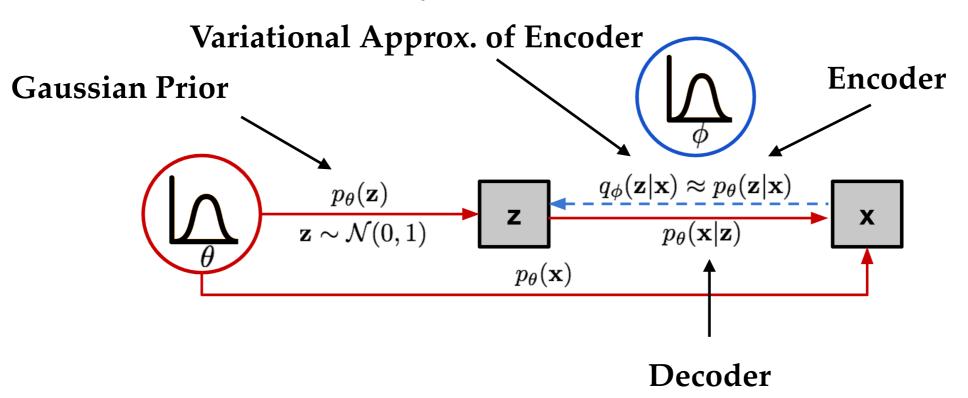
Robustifying Autoencoders

• Just add noise?



Variational Autoencoders

- What if instead of simply compressing data, we want to be able to generate new data
 - Idea: cast generation as a problem of sampling from a tractable (ideally high entropy) distribution and then transforming sample
 - This gives us the probabilistic encoder-decoder structure used in rate-distortion theory



Learning a VAE

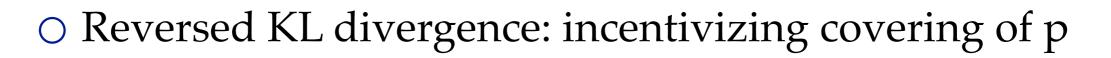
• What optimization problem are we trying to solve?

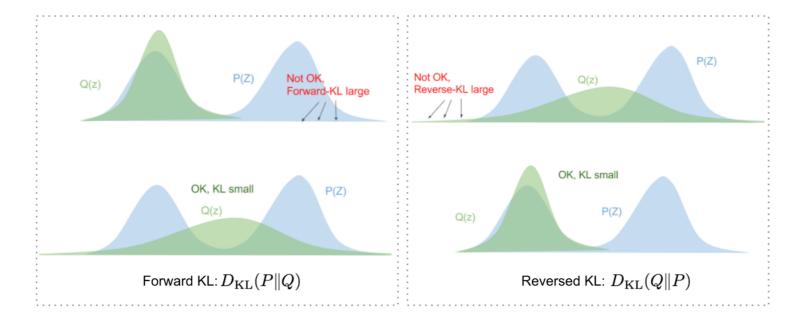
$$\theta^* = \arg \max_{\theta} \prod_{i=1}^n p_{\theta}(\mathbf{x}^{(i)})$$
$$\theta^* = \arg \max_{\theta} \sum_{i=1}^n \log p_{\theta}(\mathbf{x}^{(i)})$$
$$p_{\theta}(\mathbf{x}^{(i)}) = \int p_{\theta}(\mathbf{x}^{(i)} | \mathbf{z}) p_{\theta}(\mathbf{z}) d\mathbf{z}$$

- This is very hard because we need to evaluate an integral for every possible decoder
 - Idea: reduce search space through a variational approximation

Choosing a Variational Approximation

- Effectively, we are performing a projection onto some space of nicely parameterizable distributions
- What distance metric should we use to define closest?





Evidence Lower Bound

• Now, we have a function to minimize:

 $q^*_\lambda(z \mid x) = rgmin_\lambda \mathbb{KL}(q_\lambda(z \mid x) \mid\mid p(z \mid x)).$

• How do we make it tractable to compute?

 $\mathbb{KL}(q_\lambda(z \mid x) \mid\mid p(z \mid x)) = \mathbf{E}_q[\log q_\lambda(z \mid x)] - \mathbf{E}_q[\log p(x, z)] + \log p(x)$

 p(x) is the problem (this is what we're trying to find a tractable approximation to in the first place so it can't be in our lost function)

Evidence Lower Bound

• Define the ELBO as follows:

 $ELBO(\lambda) = \mathbf{E}_q[\log p(x,z)] - \mathbf{E}_q[\log q_\lambda(z \mid x)]$

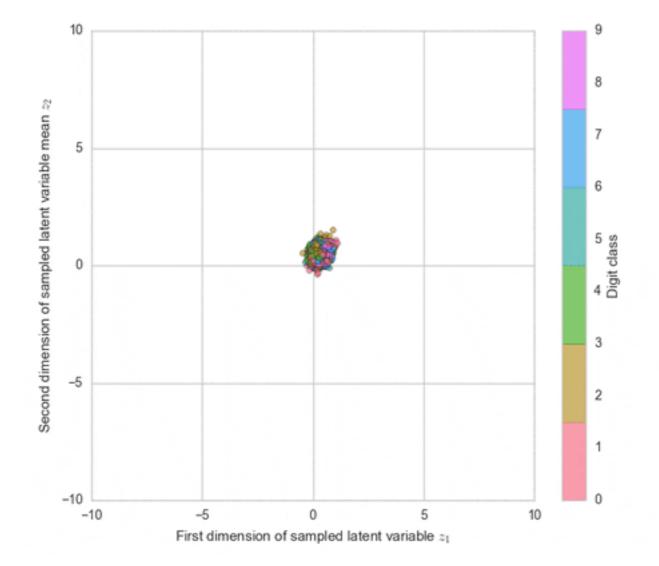
 \bigcirc Then, we can rewrite p(x) as

 $\log p(x) = ELBO(\lambda) + \mathbb{KL}(q_{\lambda}(z \mid x) \mid\mid p(z \mid x))$

- KL is always non-negative so we can minimize it by maximizing the ELBO because of the above constraint.
- Thus, rearranging terms, the loss for a single data point becomes the negative of:

 $ELBO_i(heta,\phi) = \mathbb{E}q_ heta(z \mid x_i)[\log p_\phi(x_i \mid z)] - \mathbb{KL}(q_ heta(z \mid x_i) \mid\mid p(z)))$

Hype GIFs





Fixing a Broken ELBO

○ Our old friends return:

$$H \equiv -\int dx \, p^*(x) \log p^*(x)$$
$$D \equiv -\int dx \, p^*(x) \int dz \, e(z|x) \log d(x|z)$$
$$R \equiv \int dx \, p^*(x) \int dz \, e(z|x) \log \frac{e(z|x)}{m(z)}$$

○ H is the entropy of the data

- D is negative log likelihood of reconstruction (not Hamming)
- R is excess number of bits to encode samples from encoder using a code designed for m(z)
- This gives us the following bound:

 $H - D \le I_e(X; Z) \le R$

Beta VAEs

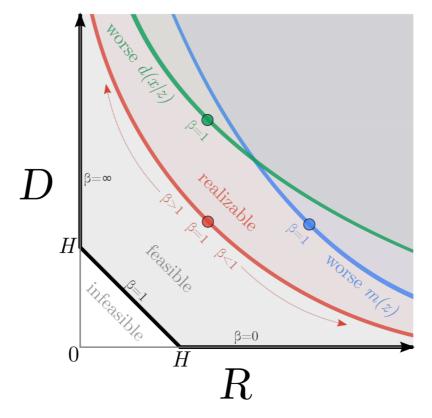
• Let us define a slightly more general version of ELBO:

$$\min_{e(z|x),m(z),d(x|z)} \int dx \, p^*(x) \int dz \, e(z|x) \\ \left[-\log d(x|z) + \beta \log \frac{e(z|x)}{m(z)} \right].$$

- If we set Beta = 1, then we get the traditional ELBO and can see that ELBO = -(D + R)
 - Thus, there are a wide variety of encoder-decoder pairs with the same value of ELBO loss.

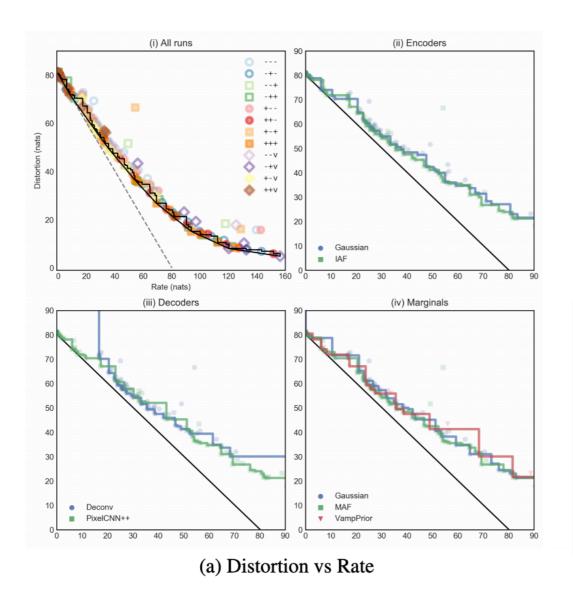
Fixing a Broken ELBO

- We can define a feasible set by using standard rate-distortion theory
- We can define a realizable set by considering our parametric family
- We can control where we fall in the realizable set through manipulation of Beta



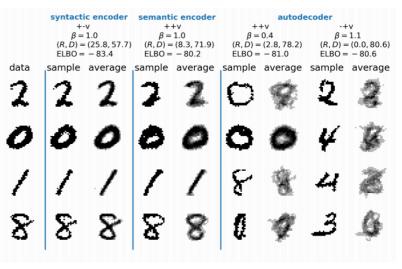
Praxis

• We can see these tradeoffs experimentally too:



	syntactic encoder				autodecoder			
	$\beta = 1.0$		$\beta = 1.0$		$\beta = 1.0$		$\beta = 1.0$	
			(R, D) = (25.8, 57.7) ELBO = -83.4				(R, D) = (0.0, 80.7) ELBO = -80.7	
data	sample	average	sample	average	sample	average	sample	average
2	2	2	2	2	Θ	3	5	蒙
0	0	0	0	2 0	4	Ŧ	0	¢¢
1	1	1	7	1	7	ð.	8	彦
8	8	8	8	8	Ŧ	Å	8	Ċ.

(c) Reconstructions from 4 VAE models with $\beta = 1$.



(d) Reconstructions from models with the same ELBO.

Information Bottleneck

- Another cool use of mutual information is to make sure that we learn an efficient embedding input
- By the data processing inequality, the maximally informative embedding is the identity
- However, we want a less complex representation so we can constrain the mutual information

 $\max_{\boldsymbol{\theta}} I(Z, Y; \boldsymbol{\theta}) \text{ s.t. } I(X, Z; \boldsymbol{\theta}) \le I_c$ $R_{IB}(\boldsymbol{\theta}) = I(Z, Y; \boldsymbol{\theta}) - \beta I(Z, X; \boldsymbol{\theta}).$

• Here, Beta controls tradeoff between compression and reconstruction.

Questions?

Thanks :)