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Fixing a Broken ELBO

○ Today, we’re going to be talking about https://arxiv.org/
pdf/1711.00464.pdf

○ Key Insight: We can use rate and distortion to define a 
Pareto-optimal frontier for latent variable models. We can 
then select from this frontier based on our application.

https://arxiv.org/pdf/1711.00464.pdf
https://arxiv.org/pdf/1711.00464.pdf


Information Theory

○ Information Theory is a science of inequalities

○ The goal is to define bounds on how well we can do, not figure out how to 
achieve them

○ That is coding theory, which is an almost orthogonal field

○ Shannon’s A Mathematical Theory of Communication outlines bounds for 2 
problems:

○ Reliable Communication

○ Lossy Compression

○Most results will be stated without proof today, read Cover & Thomas for 
justification



Information Measures

○ These quantities will keep popping up so let’s name them

○ Entropy:

○ Conditional Entropy:

○Mutual Information:

○ Relative Entropy:

○ Not a metric

H(X) = ∑
x∈X

pX(x) * log
1

pX(x)
= E[log

1
pX(x)

]

I(X; Y ) = I(Y; X) = H(X) − H(X |Y ) = H(Y ) − H(Y |X)
I(X; Y ) = = H(X) + H(Y ) − H(X, Y )

H(X |Y ) = EX,Y[log
1

pX|Y(x)
] = H(X, Y ) − H(Y )

DKL(p | |q) = ∑
i

pi * log
pi

qi
≠ DKL(q | |p) ≥ − log 1 = 0



Information Diagram



What is Entropy?

○Warm, fuzzy intuition is that it measures the randomness 
or unpredictability of a distribution.

○Minimum expected description length for a random 
variable

○ Achievable-ish using Huffman Coding: start out with 
singletons and construct tree by combining two nodes 
with lowest probability.

○ Used in RL to incentivize exploration



Maximum Entropy

○What is the maximum entropy distribution over alphabet X?

○ Uniform:

○What is the maximum entropy distribution given a specific 
mean?

○ Exponential

○What is the maximum entropy distribution given a specific 
variance?

○ Gaussian

○ This is why the Central Limit Thm. Holds

○ Also why it is useful for physical noise (           )1
2

mv2



Inverse Reinforcement Learning

○ Reinforcement Learning: find actions that maximize 
reward

○ Inverse Reinforcement Learning: find reward function that 
would have made actions taken optimal

○ Standard Recipe: write                      and maximize over 
w

○ Guarantees match in expected feature counts after 
convergence

○ This requires optimality of demonstrator  

R(s) = wTθ(s)



MaxEnt Inverse Reinforcement Learning

○ To relax this constraint, why don’t we assume people 
behave as randomly as possible while still having the 
same expected feature counts (first moment constraint)
○ Boltzmann Rationality:

○ Then, we apply Bayesian Inference to recover reward 
function



Data Processing Inequality

○ Assume we have 3 variables that form a Markov Chain. 
Then,

○ Now, consider Y being your latent representation. What 
does this imply?

X → Y → Z ⟹ I(X; Z) ≤ I(X; Y )



Reliable Communication

○ Shannon’s Block Diagram:

○ Let rate of (M messages, n length)-block code be defined 
as

○ Source Coding Theorem:



Lossy Compression

○We wanted perfect reconstruction before - what if we relax 
that constraint?

○We tolerate some level of distortion now. For example, 
Hamming distance:

○ Let f be our encoder, g be our decoder. Then, the expected 
distortion of this pair is D 

○ Then, the rate-distortion theorem tells us that the lowest 
rate (best compression) we can send at is:



Rate-Distortion Functions

○ The rate-distortion defines the Pareto-optimal frontier for 
the problem:



Source Coding vs. 
Rate-Distortion

○ Source coding is effectively a sphere packing problem - how 
can we define a sphere around each symbol such that we 
have the minimum overlap (misinterpretations)

○ Rate distortion is effectively a covering problem - how can 
we waste as little space (representations) as possible so we 
can compress as effectively as possible

○ These are dual problems of each other 



Vanilla Autoencoders

○ “Unsupervised”



Robustifying Autoencoders

○ Just add noise?



Variational Autoencoders

○ What if instead of simply compressing data, we want to be able to 
generate new data
○ Idea: cast generation as a problem of sampling from a tractable 

(ideally high entropy) distribution and then transforming 
sample

○ This gives us the probabilistic encoder-decoder structure used 
in rate-distortion theory

Gaussian Prior

Decoder

Encoder
Variational Approx. of Encoder



Learning a VAE

○What optimization problem are we trying to solve?

○ This is very hard because we need to evaluate an integral for 
every possible decoder

○ Idea: reduce search space through a variational 
approximation



Choosing a Variational Approximation

○ Effectively, we are performing a projection onto some 
space of nicely parameterizable distributions

○What distance metric should we use to define closest?

○ Reversed KL divergence: incentivizing covering of p



Evidence Lower Bound

○ Now, we have a function to minimize:

○ How do we make it tractable to compute?

○ p(x) is the problem (this is what we’re trying to find a 
tractable approximation to in the first place so it can’t be 
in our lost function)



Evidence Lower Bound

○ Define the ELBO as follows:

○ Then, we can rewrite p(x) as

○ KL is always non-negative so we can minimize it by 
maximizing the ELBO because of the above constraint.

○ Thus, rearranging terms, the loss for a single data point 
becomes the negative of:



Hype GIFs



Fixing a Broken ELBO

○ Our old friends return:

○ H is the entropy of the data

○ D is negative log likelihood of reconstruction (not Hamming)

○ R is excess number of bits to encode samples from encoder using a code 
designed for m(z)

○ This gives us the following bound:



Beta VAEs

○ Let us define a slightly more general version of ELBO:

○ If we set Beta = 1, then we get the traditional ELBO and can see 
that ELBO = -(D + R)

○ Thus, there are a wide variety of encoder-decoder pairs with the 
same value of  ELBO loss.



Fixing a Broken ELBO

○ We can define a feasible set by using standard rate-distortion 
theory

○ We can define a realizable set by considering our parametric 
family

○ We can control where we fall in the realizable set through 
manipulation of Beta



Praxis

○We can see these tradeoffs experimentally too:



Information Bottleneck

○ Another cool use of mutual information is to make sure that we 
learn an efficient embedding input

○ By the data processing inequality, the maximally informative 
embedding is the identity

○ However, we want a less complex representation so we can 
constrain the mutual information

○ Here, Beta controls tradeoff between compression and 
reconstruction.



Questions?
Thanks :)


