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Fixing a Broken ELBO

O Today, we're going to be talking about https:/ /arxiv.org/
pdf/1711.00464.pdf

O Key Insight: We can use rate and distortion to define a
Pareto-optimal frontier for latent variable models. We can
then select from this frontier based on our application.



https://arxiv.org/pdf/1711.00464.pdf
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Information Theory

O Information Theory is a science of inequalities

O The goal is to define bounds on how well we can do, not figure out how to
achieve them

O That is coding theory, which is an almost orthogonal field

O Shannon’s A Mathematical Theory of Communication outlines bounds for 2
problems:

O Reliable Communication
O Lossy Compression

O Most results will be stated without proof today, read Cover & Thomas for
justification



Information Measures

O These quantities will keep popping up so let’s name them

O Entropy: HX) = Z Py(x) * log
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O Conditional Entropy: H(X|Y) = Ey{log 1=HX,Y)—H(Y)

Px| y(X)

O Mutual Information: rx;v) = 1v:X) = HX) - HX|Y) = HY) — H(Y | X)
I(X;Y)==HX) + H(Y) - HX,Y)

O Relative Entropy: Dy, (pllg) = Z p; *log &: # Dy (ql|p) > —1logl =0
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O Not a metric



Information Diagram




What is Entropy?

O Warm, fuzzy intuition is that it measures the randomness
or unpredictability of a distribution.

O Minimum expected description length for a random
variable

O Achievable-ish using Huffman Coding: start out with
singletons and construct tree by combining two nodes

with lowest probability.

O Used in RL to incentivize exploration
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Maximum Entropy

O What is the maximum entropy distribution over alphabet X?

O Uniform: o < D(pl|lu) = Z}) ) log = —H(X) + log|X|

O What is the maximum entropy dlstribution given a specific

mean?
. . o e M g >0,
O Exponential f(z;}) = {0 z < 0.

O What is the maximum entropy distribution given a specific
variance?

O Gaussian

O This is why the Central Limit Thm. Holds

O Also why it is useful for physical noise ( %mvz )



Inverse Reinforcement Learning

O Reinforcement Learning: find actions that maximize
reward

O Inverse Reinforcement Learning: find reward function that
would have made actions taken optimal

O Standard Recipe: write R(s) = w'0(s) and maximize over
W

O Guarantees match in expected feature counts after
convergence

O This requires optimality of demonstrator



MaxEnt Inverse Reinforcement Learning

O To relax this constraint, why don’t we assume people
behave as randomly as possible while still having the
same expected feature counts (first moment constraint)

O Boltzmann Rationality:
1

P((si,ai)|R) = ZGXP{O&Q*(%%L»R)}

O Then, we apply Bayesian Inference to recover reward
function

P(r|R) = [T P((si,a)|R) B(r|R) = Jexp{ad" Q" (si.ai, R)}
1=1 1=1

P(r|R)P(R)

P(Rlr) = = = %exp{aZQ*(si,ai,R)}P(R)




Data Processing Inequality

O Assume we have 3 variables that form a Markov Chain.
Then,

X->Y->7Z = IX;Z2) LIX;Y)

O Now, consider Y being your latent representation. What
does this imply?
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Reliable Communication

O Shannon’s Block Diagram:

| signal corrupted |
Message — Encoder —— Channel " Decoder —» Message

signal

O Let rate of (M messages, n length)-block code be defined

as 1
= ~log M
n

O Source Coding Theorem:

C' = sup{ R| R is achievable}

C=supl(X;Y)
Px



Lossy Compression

O We wanted perfect reconstruction before - what if we relax
that constraint?

O We tolerate some level of distortion now. For example,
Hamming distance: d(X,X)= (X - X)’

O Let f be our encoder, g be our decoder. Then, the expected
distortion of this pairis D =3 p@") - d@".g.(/u(=")))

O Then, the rate-distortion theorem tells us that the lowest
rate (best compression) we can send at is:

R(D) = min [(X:X)

P{ X :EP‘\A',X ([(JYHY)SD



Rate-Distortion Functions

O The rate-distortion defines the Pareto-optimal frontier for
the problem:

R
A

= min  I(X;X)
Pyg\x :EPX,X d(X,X)<D

/').’v';:f {



Source Coding vs.
Rate-Distortion

O Source coding is effectively a sphere packing problem - how
can we define a sphere around each symbol such that we
have the minimum overlap (misinterpretations)

O Rate distortion is effectively a covering problem - how can
we waste as little space (representations) as possible so we

can compress as effectively as possible

O These are dual problems of each other



Vanilla Autoencoders

O “Unsupervised”

Reconstructed

L R ——— Ideally they are identical. ------------------ > input

X ~ x'

Bottleneck!
Encoder Decoder
X x’
9é fo

An compressed low dimensional
representation of the input.
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Robustitying Autoencoders

O Just add noise?

T TTToTTmommososoosososoooooooooooooooooooo Ideally they are identical. ~-----------------rmmmmmmmm oo :

. X~ X
Original FEELLY Reconstructed
: destroyed  Input input
Input input P
X
Bottleneck!

Encoder Decoder ,
96 fo X

An compressed low dimensional
representation of the input.

OROOXXO




Variational Autoencoders

O What if instead of simply compressing data, we want to be able to
generate new data
O Idea: cast generation as a problem of sampling from a tractable
(ideally high entropy) distribution and then transforming
sample
O This gives us the probabilistic encoder-decoder structure used
in rate-distortion theory

Variational Approx. of Encoder
Gaussian Prior \ @ Encoder

‘ Q L 9s(2[x) = po(z]x)
/ z~N0 1) po(x|z) g s
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Decoder



Learning a VAE

O What optimization problem are we trying to solve?

@* = arg max x¥
g ms gpe( )

0* = 1 ®
arg mgxi; og pe(x*”)

po(x?) = / po(x? |2)py(z)dz

O This is very hard because we need to evaluate an integral for
every possible decoder

O Idea: reduce search space through a variational
approximation



Choosing a Variational Approximation

O Effectively, we are performing a projection onto some
space of nicely parameterizable distributions

O What distance metric should we use to define closest?

O Reversed KL divergence: incentivizing covering of p

Forward KL: Dk, (P||Q) Reversed KL: Dk, (Q|/P)



Evidence Lower Bound

O Now, we have a function to minimize:

¢\(2 | z) = argmin\KL(gx(2 | 2) || p(2 | z)).
O How do we make it tractable to compute?
KL(gr(z [ 2) [| p(z | ) =

E,[log g:(= | z)] - B,[log p(x, 2)] + log p(x)

O p(x) is the problem (this is what we're trying to find a
tractable approximation to in the first place so it can’t be
in our lost function)



Evidence Lower Bound

O Define the ELBO as follows:
ELBO(A) = Eyllog p(z, z)| — E,[log gx(z | z)]

O Then, we can rewrite p(x) as

logp(z) = ELBO(A) + KL(gx(2 | z) || p(z | 2))

O KL is always non-negative so we can minimize it by
maximizing the ELBO because of the above constraint.

O Thus, rearranging terms, the loss for a single data point
becomes the negative of:

ELBO;(0, ¢) = Eqp(z | z;)[log ps(; | 2)] — KL(ge(2 | 2:) || p(2))



Second dimension of sampled latent vanable mean :
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Fixing a Broken ELBO

O Our old friends return:
= - [ dop'(@)logp" (@
= —/d:cp*(a:)/dze(z|x) log d(z|2)

R = /dmp*(m) /dz e(z|x) log e(z|z)
O H is the entropy of the data

m(z)

O D is negative log likelihood of reconstruction (not Hamming)

O Ris excess number of bits to encode samples from encoder using a code
designed for m(z)

O This gives us the following bound:

H-D<I(X;Z)<R



Beta VAEs

O Let us define a slightly more general version of ELBO:

min dx p*(z dze(z|lz
6(Z|:B),m(z),d(x|z)/ p ( )/ ( | )
e(z|:1:)]

[— logd(xz|z) + Blog m(z) |

O If we set Beta = 1, then we get the traditional ELBO and can see
that ELBO =-(D + R)

O Thus, there are a wide variety of encoder-decoder pairs with the
same value of ELBO loss.



Fixing a Broken ELBO

O We can define a feasible set by using standard rate-distortion
theory

O We can define a realizable set by considering our parametric
family

O We can control where we fall in the realizable set through
manipulation of Beta




Praxis

O We can see these tradeoffs experimentally too:

syntactic encoder autodecoder
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Information Bottleneck

O Another cool use of mutual information is to make sure that we
learn an efficient embedding input

O By the data processing inequality, the maximally informative
embedding is the identity

O However, we want a less complex representation so we can
constrain the mutual information

mgxI(Z, Y;0)st. I(X,Z;0) < I,
RIB(H) — I(Z,Y, 0) o ,BI(Z,X,H)

O Here, Beta controls tradeoff between compression and
reconstruction.



Questions?
Thanks :)



