Leveraging Human Input for Training Self-Driving Cars Gokul Swamy gswamy@cmu.edu

Key Idea: People in and around cars make *purposeful decisions*, which allows us to design efficient algorithms that take advantage of this structure.

How do SDC work?

What we're going to talk about

Learning to Drive via Imitation

Why Imitation Learning for SDC?

- Generally speaking, people are good drivers.
 - Collected data will be of a high quality. Can filter out bad examples.
- We can identify what they care about.
 - This makes designing a state space not too bad.

Why Imitation Learning for SDC?

• Reward design is very hard.

• How would you write down a reward function for good driving?

Imitation Learning: Behavioral Cloning

$$L(\pi) = \frac{1}{N} \sum_{i}^{N} (\pi(s_i) - a_i)^2$$

Imitation Learning: Behavioral Cloning

Imitation Learning: DAgger

- 2. run $\pi_{ heta}(u_t|o_t)$ to get dataset $\mathcal{D}_{\pi} = \{o_1, ..., o_M\}$
- 3. Ask human to label \mathcal{D}_{π} with actions u_t
- 4. Aggregate: $\mathcal{D}_{\pi^*} \leftarrow \mathcal{D}_{\pi^*} \cup \mathcal{D}_{\pi}$
- 5. GOTO step 1.

(For more info, read <u>https://www.ri.cmu.edu/pub_files/</u> 2015/3/InvitationToImitation_3_1415.pdf)

Learning to Intervene via Imitation

Scaling Teleoperation

Scaling Teleoperation

Scaling Teleoperation

Imitation learning is hard when the expert doesn't know what to do!

We can use decisions that the operator makes in easy settings with only a few robots to train a predictive model of user behavior that generalizes to challenging settings with many robots.

We can use decisions that the operator makes in easy settings with only a few robots to train a predictive model of user behavior that generalizes to challenging settings with many robots.

Training

We can use decisions that the operator makes in easy settings with only a few robots to train a predictive model of user behavior that generalizes to challenging settings with many robots.

We can use decisions that the operator makes in easy settings with only a few robots to train a predictive model of user behavior that generalizes to challenging settings with many robots.

Scaled Autonomy

Luce et al.

Scaled Autonomy

Step 1: Let user freely choose which of a few robots to teleoperate.

Step 3: Take the argmax over the learned function to automatically choose a robot for the user.

Step 2: Train a network to mimic user choices hu maximizino the likelihood of the demonstrated

Learning to Model Other Drivers via "Imitation"

Behavior Prediction

- Naive Approach
 - Fit network to map from state of all cars to action of a particular car
 - **Q**: Why might this not work well?
 - A: Your actions influence the actions of other cars

Behavior Prediction

- **Problem**: other drivers *react* to the positions and actions of your car
 - Predictions \rightarrow Your Actions \rightarrow Other's Actions \rightarrow Pred.
 - So if you update your policy, you change input distribution to behavior network
- **Solution**: learn a function that models the person's response to a robot's action
 - Question: what kind of function to learn?

Black-Box Models

Theory of Mind

Inferring Utility Functions

- Approach: Inverse Optimal Control / Inverse Reinforcement Learning
 - RL: Given reward function, find best actions
 - IRL: Given actions, find reward function that would have produced these actions
- High level blueprint: Fix a set of features a person driving could care about. Figure out what weights on these features would produce observed behavior on average.

Theory of Mind Results

Much better sample complexity

Questions?

