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Key Idea: People in and around cars
make purposeful decisions, which allows
us to design efficient algorithms that
take advantage of this structure.





https://www.youtube.com/watch?v=fBrZT99dFB4



https://www.youtube.com/watch?v=IaoIqVMd6tc

How do SDC work?
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Where is human input required?
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Where is human input required?
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What we’re going to talk about




Learning to Drive via Imitation




Why Imitation Learning for SDC?

O Generally speaking, people are good drivers.

O Collected data will be of a high quality. Can filter out
bad examples.

O We can identify what they care about.

O This makes designing a state space not too bad.



Why Imitation Learning for SDC?

O Reward design is very hard.

O How would you write down a reward function for good
driving?
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https://www.youtube.com/watch?v=tlOIHko8ySg

Imitation Learning: Behavioral Cloning
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Imitation Learning: Behavioral Cloning




Imitation Learning: DAgger

1. train 7T0(Ut|0t) from human data Dw* — {01, Uty eery ON,UN}

2.l run 7T9(Ut|0t) to get dataset D, = {01, ooy OM}

3 . ASk h u m an to Iabel Dﬂ' With aCtio nS ut Execute current policy and Query Expert
New Data

Steering
from expert

4. Aggregate: D« < D_« UD,_ ng‘
N

5. GOTO step 1.

(For more info, read https:/ /www.ri.cmu.edu/pub_files/
2015/3/InvitationTolmitation_3_1415.pdf) Supervised Learning



https://www.ri.cmu.edu/pub_files/2015/3/InvitationToImitation_3_1415.pdf
https://www.ri.cmu.edu/pub_files/2015/3/InvitationToImitation_3_1415.pdf
https://www.ri.cmu.edu/pub_files/2015/3/InvitationToImitation_3_1415.pdf

Learning to Intervene via Imitation




Scaling Teleoperation




Scaling Teleoperation
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Scaling Teleoperation

Imitation learning is hard when the expert doesn’t
know what to do!



Key Insight

We can use decisions that the operator makes in easy
settings with only a few robots to train a predictive
model of user behavior that generalizes to challenging
settings with many robots.
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Naive Approach via Classification

f
Make automated choices @

= arg max f(S;)




Naive Approach via Classification
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Naive Approach via Classification
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Naive Approach via Classification
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Naive Approach via Classification
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Naive Approach via Classification
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Naive Approach via Classification




Scaled Autonomy

P(s1) < P(s,)

Luce et al.



Scaled Autonomy

Step 1: Let user
freely choose
which of a few robots to
teleoperate.

Step 2: Train a network to mimic user choices

hvu mavimizino the likelihond of the demonstrated

Step 3: Take the
argmax over the
learned function to
automatically choose
a robot for the user.



Learning to Model Other Drivers via
“Imitation”




Behavior Prediction

® Naive Approach

® Fit network to map from state
of all cars to action of a
particular car

® Q: Why might this not work
well?

® A: Your actions influence the
actions of other cars




Behavior Prediction

® Problem: other drivers react to the positions and actions of
your car

® Predictions — Your Actions — Other’s Actions — Pred.

® So if you update your policy, you change input distribution
to behavior network

® Solution: learn a function that models the person’s response
to a robot’s action

® Question: what kind of function to learn?



Black-Box Models




Theory of Mind




Inferring Utility Functions

® Approach: Inverse Optimal Control / Inverse
Reinforcement Learning

® RL: Given reward function, find best actions

® [IRL: Given actions, find reward function that would
have produced these actions

® High level blueprint: Fix a set of features a person driving
could care about. Figure out what weights on these
features would produce observed behavior on average.



Theory of Mind Results

Performance Under Correct Modeling Assumptions
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Questions?




