Human Assisted Few-Shot Object Sorting

Gokul Swamy*
gokul.swamy@berkeley.edu

Abstract

For industrial as well as personal robotics applica-
tions, sorting objects is a problem with wide applica-
bility. In this project, we focus on performing sorting
where we do not know a priori what features a per-
son is separating objects by and must discover this on-
line based on a few examples, allowing us to complete
the rest of the sorting task without need for assistance
from the person. We perform this task from vision to
make it intuitive for a person to specify what they want
to be done, without them needing to be trained in the
use of a controller or programming language. To sim-
plify the implementation, we focus on binary sorting
where the robot has to move the object to either side of
the table based on the objects that are already there.
On a hand-collected dataset of 135 RGB object im-
ages, which capture various poses of the 22 objects, we
train a CNN-based autoencoder to reconstruct each
instance and thereby obtain information-rich embed-
dings. This performs with perfect classification rate as
compared to our 0.5 rate for the random embedding
baseline. Our code is available at this link.

1. Introduction

Few-shot object classification, or the ability to cat-
egorize a set of objects based on a limited dataset,
can improve human robot interaction in the workplace,
where after a certain number of human actions the
robot can automatically finish the job of sorting a col-
lection of objects. To accomplish this task success-
fully, the robot must be able to infer what features a
person was using to sort the objects. Because we use
a vision-based sensing module, some more functional
features might be hard to infer (for example, a per-
son could put a match and a lighter in the same cat-

Andrew Li*
andrewyli@berkeley.edu

Figure 1: The setup we used for our experiments. The
USB camera on the left is used to take a picture of the
objects on the table, and one computer performs the
template matching algorithm on it. On the right the
Jaco Arm pushes objects with the wrist” joint either
left (into the picture) or right (towards the viewer).

egory and unless they were both producing fire, the
robot might have difficulty understanding why they
were grouped together). Therefore, we focus on exam-
ples where the sorting is done based on visual features
like shape or color.

1.1. Key Contributions

We propose a pipeline to accomplish the above task.
Our pipeline can be divided into a few key compo-
nents:

e A comprehensive pose dataset (n=135) of the 22
objects used in training.

e A convolutional autoencoder which produces an
embedding suitable for categorization into arbi-
trary classes.

https://github.com/gkswamy98/autosort

e A geometric method to map from image-space
pixel coordinates of detected objects to robot co-
ordinate frame 3D methods.

e A basic motion planner that gets behind objects
and pushes them towards one of two pre-defined
goals.

1.2. Related Work

Other recent approaches to classification in the con-
text of computer vision have used convolutional net-
works to approach target datasets with few available
examples [3][6] We apply similar methods but in the
context of robotic sorting to produce a prototype that
goes from camera image to physically sorted objects.

Our work is also connected to the problem of intent
inference in human-robot interaction [2]. Here, we at-
tempt to infer which of two classes a person wants an
object to be in. As mentioned in our introduction, we
assume the features a person uses to make this clas-
sification are purely visual and require no knowledge
of the functionality of an object. We perform this in-
ference examining compressed visual features of these
objects. The compression is performed via a stan-
dard CNN-based autoencoder [1]. We discuss why we
choose this approach in our methods section.

Our method for sorting objects based on embed-
dings was partially inspired by similar work in natural
language processing [7].

2. Methods

2.1. Overview

We used a Logitech webcam to take photos through
the library ffmpeg, which produced three channel
color images with spatial dimensions of 720 by 540
pixels. Once we took in the scene image, we passed
over the image with our poses (template matching) to
find the positions and bounding boxes of all the ob-
jects on the table. From there, the program calculated
the coordinates for the dynamics of the arm from the
pixel positions of the object bounding boxes. To de-
cide which direction to push the object, a snapshot of
the object was fed through the autoencoder and the
middle layer was compared against the embeddings of
either side’s objects and the new object was assigned
to the side with the closer mean embedding. Finally,
the coordinates and direction were sent to a machine

12@14x14 12@7x7 1x120
3@28x28
It
Input Conv. Conv.

Figure 2: A rough sketch of the encoder architecture
we used. The decoder architecture performed the same
operations but in reverse.

connected to the robot, which upon receiving the file
solved the motion planning problem for the robot to
push the object to a side. This process was repeated
with the set of 100 untrained random embeddings.

2.2. Dataset Generation

We took 10 pictures of our 22 objects, cycling them
in rows and columns around the table and rotating
them 30 degrees per shot, as well as choosing different
faces to balance the object on if it was a prism. This
gave us 10 poses per image, which we filtered down to
135 images if two poses were too similar to both be of
value. Our images gave us a wide variety of poses and
sizes to work with, which vastly improved the object
detector.

2.3. Object Detection

Because of our limited dataset, we used our poses in
a simple image template matching algorithm. We took
each pose image and convolved it over the input scene,
producing a Euclidean inner product per location. The
top left corner of an object, (4, j), was taken to be

argmaxi,jX[z‘:HH,j:jJrW] - P
for image X and pose image P.
2.4. Object Classification

The network we used to train the embeddings was a
convolutional autoencoder with two convolutional lay-
ers with kernel size 3 and 12 output channels each.
The input images were fed in batches of 2, and were
standardized to 28 by 28 pixel dimensions. Following

these it had one fully connected layer that produced
the embedding in the middle, and then one linear and
two convolutional transpose layers to attempt to recre-
ate the input image. Between corresponding encoder
and decoder layers, we used additive skip connections
to preserve spatial structure, which greatly improved
reconstruction performance. The main loss function
we used was the Euclidean L2 Loss over all pixels be-
tween the input and output images, defined as

L= lIX — a(f (X))

We trained for 200 epochs with an initial learning
rate of 0.002, using the AdamOptimizer method. We
tried using KL divergence and a variational autoen-
coder instead of a simple autoencoder, but they did not
improve reconstruction performance [5].

Ultimately, the layer we were interested in is the
middle embedding layer, which contained 120 fea-
tures.

We took the objects moved by the human to the left
and those to the right, and computed the average em-
bedding for each side. This allows the features com-
mon to each side to remain the same value. For each
object not already on a side, we computed its embed-
ding and assigned it to either the left or the right based
on which embedding vector was closer to it in the em-
bedding space by L2 distance (equivalent to cosine dis-
tance because vectors were normalized).

For the case of random embeddings, we took 100
randomly initialized copies of the encoder-decoder
network we designed and picked the embedding that
maximized the L2 distance between the left and right
average embeddings. This allowed us to quickly gen-
erate a reasonable baseline that would have enough
difference between its two classes to allow for more
robust classification.

2.5. Converting to Robot Work Space

We used several similar triangles to convert between
the image space of the camera and the 3D space passed
to the robot. We assumed a pinhole camera model
which was accurate enough because our camera was
very close to the objects and the table was flat. We
measured several calibration parameters:

e The height of the camera to the table h.

\Image

Figure 3: A visual of some of the parameters we mea-
sured for calibration along with some of the transfor-
mations used. At a high level, we find the point along a
world plane that intersects the table plane correspond-
ing to the detected object center on the image plane
and then shift the coordinate center to the robot’s base.
We refer the reader to our implementation for the ac-
tual values of various parameters and equations used
to perform the transformations.

e The angle between the optical axis of the camera
and the table 6.

e The position of objects of known size in image
space and the distance to them from the camera.

First, we estimated the focal length of our camera. To
do this, we placed a piece of letter paper at the base of
the camera and used the coordinates in image space of
two corners of the paper to solve the pinhole camera
equation:

fx
X ==
A

where Z is the distance along the optical axis, X is
the known width of the piece of paper, and x is the
difference from image center of the pixel coordinate.
Then, we performed a series of transformations to
get from the camera’s point of view to the coordinate
frame of the robot. Our code implementation has the
details of the math used but at a high level, we first find
the 3D position in the camera’s point of view that cor-
responds to the 2D position by using the above equa-
tion with the constraint that the object lie on the table
(which is h away from the camera), rotate the frame

by 6 degrees to get one aligned with the table, and the
shift the frame such that it is centered at the base of the
robot.

2.6. Motion Planning

We used the Movelt package (built on top of ROS
[8]) to move from a position behind the object towards
one of two pre-defined goal positions [10]. We initially
tried using the fingers of the robot to push the objects
but because of how small they were, they would often
slip through and we were worried about damaging the
delicate fingers of the robot. Therefore, we switched
to a prehensile rather than a dextrous manipulation ap-
proach where the robot would execute a sweeping mo-
tion from behind an object and towards a goal position
for the end effector. To have the robot execute a sweep-
ing motion, we fixed the z coordinate and told the robot
to minimize the distance travelled while moving from
start to finish, the solution of which is usually a push-
ing motion. This was implemented by first converting
from the positions to poses in the robot’s configura-
tion space by using an inverse kinematics module pro-
vided as part of Movelt. Because the robot has seven
degrees of freedoms, there are many points in config-
uration space that correspond to the same position for
the end effector in work space. Therefore, we reset the
robot between pushes and used the first solution found
by the inverse kinematics module, which corresponded
to the configuration space pose closest in norm to the
reset position. This worked well unless the object was
beyond the reach of the joint we were pushing with (in
terms of radius from the robot’s base), in which case
the arm would contort itself and try to go under the ta-
ble to get extra reach (see results). Given more time,
we would include a collision constraint with the table
and potentially adaptively choose which point to push
by (including potentially the fingers) by segmenting by
radius.

To perform the motion planning for this project, we
used the Open Motion Planning Library (OMPL) [11]
which defaults to a bi-directional tree-based planner,
similar to the RRT approaches we covered in class.
We tried other avaiable options including PRM based
planners and optimization-based planners like TrajOpt
[©] but did not find any significant difference in perfor-
mance, likely due to the lack of collision constraints
and simple cost function.

Figure 4: One of ten images used to collect poses
from each object. To make the detector more robust
to changes in size, lighting, and angle, for each pic-
ture every object is shuffled around systematically and
rotated at random.

Embedding Layer

Figure 5: Embedding network output.

3. Results

The full video results can be found at
https://www.youtube.com/watch?v=oxmoNIZgDwM.

We present a series of illustrations that demonstrate
the physical motions of the robot during a trial, in Fig-
ures 4 through 7.

If we include the failure to reach the yellow
hexagon, we achieve 0.75 sorting accuracy. Program-
matically, our trained embedding still sorts it into the
correct (yellow) category and we have a classification
accuracy of 1. Our random embedding (as shown in
the video) is able to move the objects but fails to clas-
sify 2 out of 4 of them for an accuracy of 0.5.

https://www.youtube.com/watch?v=oxmoNlZqDwM

Figure 6: The starting position after the human moves
the red ring and red hexagonal prism to the far side and
the yellow ring to the close side is as follows:

Figure 7: After all steps have been taken in the pipeline
(see Methods, Overview), the robot chooses to move
the yellow triangle and successfully moves it towards
the side with the yellow ring already there.

4. Conclusions and Future Work

Our results seem to indicate that simply generating
many random embeddings and using the best fit to sort
objects does not work as well as a trained encoder or
requires generating an extremely large number of em-
beddings. These trained embeddings also appear to be
more robust to changes in lighting, as demonstrated by
the fact that the robot moved an object it had already
sorted correctly to the incorrect pile after a change in
view when using random embeddings (see video).

Figure 8: Next, it moves the red ball towards the red
ring and red hexagon.

Figure 9: However, due to solving the motion planning
problem incorrectly, the robot fails to reach the yellow
hexagon.

As noted in the introduction of our paper, we fo-
cused on sorting objects purely based on their visual
characteristics. In future work, we would like to ex-
tend this to broader sources of information about an
object. One way to do this would be to use a standard
object detection pipeline to classify an object, look up
a definition or related words, take the average across
words of the word2vec embedding of the associated
text, and concatenate this with the visual features to
generate a more comprehensive embedding. In this

work, we did not consider the intricacies of grasping,
dexterous manipulation, and deformable object mod-
eling because they were orthogonal to the core goal
of our project. For this to be truly general purpose,
a more advanced pipeline for performing these tasks
should be used, like that of [4]. We also assumed a
fixed set of objects so a simple template matching ap-
proach was sufficient for detection. In parallel to the
preceding, we would switch to a CNN-based object de-
tector to help remove this restriction. We would also
then need to provide a larger set of images as input to
our autoencoder, which we could collect manually or
source from an online dataset of images.

In conclusion, we believe our approach, when
scaled up to work with more complex situations,
presents a feasible path forward to removing some of
the burden required for doing sorting tasks by enabling
a robot to learn from a few examples how to complete
the rest of the task.

5. Acknowledgements

We would like to thank the InterACT Lab under
Professor Anca Dragan for both use of the robot and
the space, and Andreea Bobu, Ellis Ratner, Andrea
Bajcsy, and Rohin Shah for help with configuring the
motion planning library.

References

[1] Pierre Baldi. “Autoencoders, unsupervised
learning, and deep architectures”. In: Proceed-
ings of ICML workshop on unsupervised and
transfer learning. 2012, pp. 37-49.

[2] Tirthankar Bandyopadhyay et al. “Intention-
aware motion planning”. In: Algorithmic foun-
dations of robotics X. Springer, 2013, pp. 475—
491.

[3] Wei-Yu Chen et al. “A CLOSER LOOK AT
FEW-SHOT CLASSIFICATION”. In: ICLR
(2019).

[4] Michael Danielczuk et al. “Mechanical Search:
Multi-Step Retrieval of a Target Object Oc-
cluded by Clutter”. In: ICRA (2019). URL:
https : org/ abs /1903 .
01588.

/ / arxiv .

[10]

[11]

Diederik P. Kingma and Max Welling. “An
Introduction to Variational Autoencoders”. In:
Foundations and TrendsR in Machine Learning

(2019).

Yann Lifchitz et al. “Dense classification and
implanting for few-shot learning”. In: IEEE
(2019).

Tomas Mikolov et al. “Distributed representa-
tions of words and phrases and their composi-
tionality”. In: Advances in neural information
processing systems. 2013, pp. 3111-3119.

Morgan Quigley et al. “ROS: an open-source
Robot Operating System”. In:

John Schulman et al. “Motion planning with se-
quential convex optimization and convex colli-
sion checking”. In: The International Journal of
Robotics Research 33.9 (2014), pp. 1251-1270.

Ioan A. Sucan and Sachin Chitta. “Movelt”. In:
Online (). URL: http : / /moveit . ros .
org.

Ioan A Sucan, Mark Moll, and Lydia E Kavraki.
“The open motion planning library”. In: /IEEE
Robotics & Automation Magazine 19.4 (2012),
pp. 72-82.

https://arxiv.org/abs/1903.01588
https://arxiv.org/abs/1903.01588
http://moveit.ros.org
http://moveit.ros.org

	. Introduction
	. Key Contributions
	. Related Work

	. Methods
	. Overview
	. Dataset Generation
	. Object Detection
	. Object Classification
	. Converting to Robot Work Space
	. Motion Planning

	. Results
	. Conclusions and Future Work
	. Acknowledgements

