ARKIit and CoreML

Introduction to iOS Development

Background

 ARKIit and CoreML released at WWDC 2017
e Both represent a shift in traditional developer model

e Artist/Researcher creates model

e Apple takes care of hard part of implementation

e You just have to connect the above

ARKIt

e Hard Parts (taken care of):

e Visual Inertial Odometry (fusion of cameras and motion
sensing) to estimate how much device has moved

 Finding planes and surfaces in surrounding area as well
as estimating lighting for simulated objects

e Detecting faces and matching with 3D characters

e Remember to import!

Demo

https://youtu.be/S14AVwaBF-Y?t=50s

Coordinates

Coordinates may not be what
you’d expect (x is left-right, y
IS up-down, z is forward-
backwards)

Camera is at (0, O, 0)
e So don’t place object there!
1 float = 1 meter

Angles should be specified in
radians

Position, Scale, Rotation

e Position: SCNVector3(x, vy, 2)

e z=-0.5 means place object half a meter in front of user
(remember coordinate axes)

e Scale: SCNVector3(x, v, 2)
e 7z =0.5 means compress in outwards direction to half
 Rotation: SCNVector4d(x, vy, z, w)

* X, Y, and z correspond to whether the object should be
rotated around an axis, w is the angle in radians

SceneKit

e Used to handle 3D objects and handles interfacing with
ARKit

e Can use SpriteKit to handle 2D objects (see here for
details)

e Can create simple shapes (cubes, spheres, ...) as well as
importing more complicated ones

https://developer.apple.com/documentation/arkit/arskview/providing_2d_virtual_content_with_spritekit

Getting Objects

* Download objects made by
artists

e https://
www.turbosquid.com/

e https://sketchfab.com/

e Create your own

e https://www.blender.org/

e .dae or.scn files

https://www.turbosquid.com/
https://www.turbosquid.com/
https://sketchfab.com/
https://www.blender.org/

Setting the Scene

e Add a ARSceneView and add constraints to make it fill
the whole screen (recommended by HIG)

e Ask user for permission to use camera

e Open up Info.plist and add a “Privacy - Camera Usage
Description” key

e Set the value for what text you want to prompt the user
with.

Managing a Session

e Usually use ARWorldTrackingConfiguration unless you
need something more specific

* Tracks planes, feature points, and 6 degrees of
freedom of device

override func viewWillAppear(_ animated: Bool) {
super.viewWillAppear(animated)
let configuration = ARWorldTrackingConfiguration()
sceneView.session.run(configuration)

}

override func viewWillDisappear(_ animated: Bool) {
super.viewWillDisappear(animated)
sceneView.session.pause()

Tracking

e Feature points (notable points in the environment that
make it easer for us to keep a simulated object stationary)

detected automatically

e Jo detect planes add the following:

let configuration = ARWorldTrackingConfiguration()
configuration.planeDetection = .horizontal

sceneView.session.run(configuration)

Adding Simple Objects

Create SCNNode
Create Geometry (SCN) and add to node
Set position (rotation/scale if necessary) of node

Add created node as child node of sceneView’s root node

func addSphere(x: Double, y: Double, z: Double) {
let sphere = SCNSphere(radius: 0.05)
let sphereNode = SCNNode ()
sphereNode.geometry = sphere
sphereNode.position = SCNVector3(x, vy, z)
sceneView.scene.rootNode.addChildNode(sphereNode)

Adding Complex Objects

e Safely load scene from file
e Create new node

e Add each of the children nodes of the root node of the
loaded scene as children nodes of the new node

e Set position (and scale/rotation if necessary) of new node

Adding Complex Objects

func addBoard() {
guard let boardScene = SCNScene(named: "board.dae") else {return}
let boardNode = SCNNode()
for childNode in boardScene.rootNode.childNodes {
boardNode.addChildNode(childNode)
¥
boardNode.position = SCNVector3(e, 0, -1)
boardNode.scale = SCNVector3(e.1, 0.1, 0.1)
boardNode.rotation = SCNVector4(1, 0, 0, Float.pi / 2)
sceneView.scene.rootNode.addChildNode(boardNode)

Deleting Objects

e Just remove as child node of root node of sceneView

for node 1n self.sceneView.scene.rootNode.childNodes {
node.removeFromParentNode()

}

Enabling Interaction

e Add Gesture Recognizer to sceneView

let tapGestureRecognizer = UITapGestureRecognizer(target: self, action:
#selector(ViewController.didTap(withGestureRecognizer:)))
sceneView.addGestureRecognizer(tapGestureRecognizer)

e And extension to transformation matrix class

extension float4xs4 {
var translation: float3 {
let translation = self.columns.3
return float3(translation.x, translation.y, translation.z)

Enabling Interaction

e One can check if we tapped on a feature point to add a
node

@objc func didTap(withGestureRecognizer recognizer: UIGestureRecognizer) A
let taplLocation = recognizer.location(in: sceneView)
let hitTestResultsWithFeaturePoints = sceneView.hitTest(tapLocation, types: .featurePoint)
if let hitTestResultWithFeaturePoints = hitTestResultsWithFeaturePoints.first {
let translation = hitTestResultWithFeaturePoints.worldTransform.translation
addBox(x: translation.x, y: translation.y, z: translation.z)

}

e Or can check if we tapped a node that already exists and
remove it

@objc func didTap(withGestureRecognizer recognizer: UIGestureRecognizer) {
let tapLocation = recognizer.location(in: sceneView)
let hitTestResults = sceneView.hitTest(tapLocation)
guard let node = hitTestResults.first?.node else { return }
node.removeFromParentNode()

Adding In Lighting

e Default lighting is probably sufficient unless you want to
have some kind of effect (for example, a spotlight on a
certain character)

func configurelLighting() {
sceneView.autoenablesDefaultLighting = true
sceneView.automaticallyUpdateslLighting = true

Demo

(Less Cool)

CoreML

An even bigger buzzword

Lets you convert ML code written in Python into
a .mImodel file can be dropped directly into your app

Hard part: optimizes code for iOS devices
Some helpful preprocessing included

Does not currently support on-device training

(Apple)

(Custom?)

Architecture

Your app

Vision Natural language processing GameplayKit

Core ML

Accelerate and BNNS Metal Performance Shaders

(Optimized Operations) (GPU Stuff)

* = don’t use a custom model unless Apple doesn’t
cover your use case or you’re Andrew Ng

* Allows you to do many things (detect face landmarks, OCR,

scan barcodes, optical flow)

e Slower but more accurate than Corelmage and AVFoundation

e Three Steps
e Call VNRequestHandler
* Which executes a VNRequest

 And returns some VNObservation for you to process

Vision: Code

 Be sure to add Camera Usage Description to Info.plist
and import Vision

func detectText(image: UIImage){
let textRequest = VNDetectTextRectanglesRequest(completionHandler: self.detectTextCompletionHandler)
let textRequestHandler = VNImageRequestHandler(cgImage: image.cgImage!, options: [:1])
do {
try textRequestHandler.perform([textRequest])
} catch {
print(error)

func detectTextCompletionHandler(request: VNRequest, error: Error?){
guard let results = request.results as? [VNTextObservation] else {return}
var boxes = [VNRectangleObservation]()
for result in results {
if let characterBoxes = result.characterBoxes {
for box in characterBoxes {
boxes.append(box)

}
// do something here with boxes

Demo

NSLinguisticTagger

Hello NS my old friend

On device processing so No privacy worries

Can identify language, tokenize (split up into chunks), lemmatize
(give root form of word), and detect named entities (honstandard
words that may be important)

Two Steps

e Create NSLinguisticTagger with tagSchemes set to application

e Set tagger.string to the text to be analyzed.

NSLinguisticTagger: Code

e For example, to detect dominant language:

let tagger = NSLinguisticTagger(tagSchemes: [.language], options: 0)
tagger.string = "NSLinguisticTagger provides text processing APIs."
let language = tagger.dominantLanguage

 For all use case sample code, check out this link

https://willowtreeapps.com/ideas/apples-natural-language-processing-nlp-api

Custom Models

A couple popular models already converted by Apple
here

In general, find code on Github or on arXiv

Use python 2.7 package coremitools to convert code
to .mimodel format

Then, instantiate instance of generated class and use
model.prediction() method

https://developer.apple.com/machine-learning/
https://arxiv.org/

coremltools Sources

Table 1 Models and third-party tools supported by Core ML Tools

Model type

Neural networks

Tree ensembles

Support vector
machines

Generalized linear
models

Feature engineering

Pipeline models

Supported models

Feedforward, convolutional, recurrent

Random forests, boosted trees, decision trees

Scalar regression, multiclass classification

Linear regression, logistic regression

Sparse vectorization, dense vectorization,
categorical processing

Sequentially chained models

Supported
tools

Caffe v1

Keras 1.2.2+

scikit-learn
0.18

XGBoost 0.6

scikit-learn
0.18

LIBSVM 3.22

scikit-learn
0.18

scikit-learn
0.18

scikit-learn
0.18

Python Package Setup

Need to be in python 2.7

pip install virtualenv

virtualenv --python=/usr/bin/python2.7 py2.7
source py2.7/bin/activate

pip install numpy

pip install scipy

pip install sklearn

pip install coremltools

Spam Detection

e SMS Spam Detection is a mostly solved problem that can
effectively treated without using neural networks

e We’'re going to train a classifier to detect spam based on
a provided dataset

e We’ll be using the Naive Bayes, Support Vector Machine,
and Random Forest classifiers

Loading the Data

 We’ll be using data from here
e In machine learning, getting good and clean data is often the hardest part

* First, we load and split our data

raw_data = open('./smsspamcollection/SMSSpamCollection.txt', 'r')
sms_data = []

line raw_data:

split_line = line.split("\t")

sms_data.append(split_line)

sms_data = np.array(sms_data)

X = [x.lower() X sms_datal[:, 11]

y = sms_datal[:, 0]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=13)

 We train on the train data and check accuracy on test data

http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/

Testing our Models

e Use library you've selected and create models to solve
your problem (each of the models hear include a
preprocessing vectorizer and then a classifier)

e [rain the models on the test, predict on the test set and
compare to the true output for the test set to get
accuracy

pipeline_1 = Pipeline([('vect', CountVectorizer()),('clf', MultinomialNB())])
pipeline_2 = Pipeline([('vect', CountVectorizer()),('clf', LinearSvC())])

pipeline_3 = Pipeline([('vect', CountVectorizer()),('clf', RandomForestClassifier())])
pipelines = [pipeline_1, pipeline_2, pipeline_3]

pipeline pipelines:

pipeline.fit(X_train, y_train)

y_pred = pipeline.predict(X_test)

print(classification_report(y_test, y_pred, target_names=["ham", "spam"]))

Converting a Model

e Train an instance of the best model on all the data (not
just the training set)

e Use appropriate coremltools converter for your chosen
framework (see here for full documentation)

e Save the model as a .mIimodel file

coremltools

vectorizer = CountVectorizer()
vectorized = vectorizer.fit_transform(X)
model = LinearSVC()
model.fit(vectorized, y)

coreml_model = coremltools.converters.sklearn.convert(model, "message", "label")
coreml_model. save('SpamDetector.mlmodel')

https://apple.github.io/coremltools

Using an .mIimodel in Your
App

Drag and drop the file into your project
Import CoreML

Format your data as an MLMultiArray and pass it into the
model.prediction() method

Pick outputs from prediction (for example: most likely
class, class probabilities)

Spam Detection: Code

func isSpam(message: String) -> Bool {

let wordsFile = Bundle.main.path(forResource: "words_ordered", ofType: "txt")

let message = "You have won the GRAND PRIZE reply to claim your FREE MONEY"

do {
let wordsFileText = try String(contentsOfFile: wordsFile!, encoding: String.Encoding.utf8)
var wordsData = wordsFileText.components(separatedBy: .newlines)
wordsData.removelLast() // Trailing newline.
var wordsDict: [String: Int] = [:]
for (idx, word) in wordsData.enumerated() {

wordsDict[word] = idx

let posVect = vectorize(message: message, mapping: wordsDict)
if let vect posVect {

let model = SpamDetector()

let prediction = try model.prediction(message: vect)

1

if prediction.label == "ham" {
return false
} else {
return true
}
}
}
catch {
print("ERROR")
}

return true

Vectorization: Code

func vectorize(message: String, mapping: [String: Int]) -> MLMultiArray? {
var message = message
message = message.lowercased()
var vector = [Double](repeating: 0.0, count: mapping.count)
for word in message.split(separator: " "){
if let index = mapping[String(word)] {
vector[index] += 1.0

}

}

do {
let formatted = try MLMultiArray(shape: [NSNumber(integerLiteral: vector.count)], dataType: .double)
for (idx, elem) in vector.enumerated() <

formatted[idx] = NSNumber(value: elem)

}
return formatted

} catch {
return nil

¥

Demo

Spam Detection:
Closing Points

Check out my blog if you’re curious for how to integrate the
code so far into an iMessage App

Nowadays, this kind of problem is solved using neural
networks (see here if curious)

Convolutional Neural Networks work very well with text
classification (see here and here if curious)

We’d use k-fold cross validation to tune hyper-parameters as
well as tf-idf vectorization if we were to do this irl

Additionally, we’d use a much larger and more diverse dataset

http://gokulswamy.me/imessage-spam-detection/
https://gmail.googleblog.com/2015/07/the-mail-you-want-not-spam-you-dont.html
https://arxiv.org/pdf/1408.5882.pdf
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf

Machine Learning

e |f you’d like to learn more, check out the following
resources

e ML@B Blog by Geng and Shih
e STATS 385 Cheat Sheet

e CS 189 by Sahai

e CS 231n by Karpathy

* Deep Learning by Goodfellow and Bengio

https://ml.berkeley.edu/blog
https://stats385.github.io/cheat_sheet
http://www.eecs189.org/
http://cs231n.stanford.edu/
http://www.deeplearningbook.org/

Conclusion

e |OS devices are capable of some pretty awesome stuff

e Jeam up with people who are amazing at what they do
(researchers, artists, ...) to build more complex apps

e You’ve learned how to build awesome things that people
all around the world can use

e So start making and never stop!

