
ARKit and CoreML
Introduction to iOS Development

Background

• ARKit and CoreML released at WWDC 2017

• Both represent a shift in traditional developer model

• Artist/Researcher creates model

• Apple takes care of hard part of implementation

• You just have to connect the above

ARKit
• Hard Parts (taken care of):

• Visual Inertial Odometry (fusion of cameras and motion
sensing) to estimate how much device has moved

• Finding planes and surfaces in surrounding area as well
as estimating lighting for simulated objects

• Detecting faces and matching with 3D characters

• Remember to import!

Demo

https://youtu.be/S14AVwaBF-Y?t=50s

Coordinates
• Coordinates may not be what

you’d expect (x is left-right, y
is up-down, z is forward-
backwards)

• Camera is at (0, 0, 0)

• So don’t place object there!

• 1 float = 1 meter

• Angles should be specified in
radians

Position, Scale, Rotation
• Position: SCNVector3(x, y, z)

• z = -0.5 means place object half a meter in front of user
(remember coordinate axes)

• Scale: SCNVector3(x, y, z)

• z = 0.5 means compress in outwards direction to half

• Rotation: SCNVector4(x, y, z, w)

• x, y, and z correspond to whether the object should be
rotated around an axis, w is the angle in radians

SceneKit

• Used to handle 3D objects and handles interfacing with
ARKit

• Can use SpriteKit to handle 2D objects (see here for
details)

• Can create simple shapes (cubes, spheres, …) as well as
importing more complicated ones

https://developer.apple.com/documentation/arkit/arskview/providing_2d_virtual_content_with_spritekit

Getting Objects
• Download objects made by

artists

• https://
www.turbosquid.com/

• https://sketchfab.com/

• Create your own

• https://www.blender.org/

• .dae or .scn files

https://www.turbosquid.com/
https://www.turbosquid.com/
https://sketchfab.com/
https://www.blender.org/

Setting the Scene

• Add a ARSceneView and add constraints to make it fill
the whole screen (recommended by HIG)

• Ask user for permission to use camera

• Open up Info.plist and add a “Privacy - Camera Usage
Description” key

• Set the value for what text you want to prompt the user
with.

Managing a Session
• Usually use ARWorldTrackingConfiguration unless you

need something more specific

• Tracks planes, feature points, and 6 degrees of
freedom of device

Tracking
• Feature points (notable points in the environment that

make it easer for us to keep a simulated object stationary)
detected automatically

• To detect planes add the following:

Adding Simple Objects
• Create SCNNode

• Create Geometry (SCN____) and add to node

• Set position (rotation/scale if necessary) of node

• Add created node as child node of sceneView’s root node

Adding Complex Objects

• Safely load scene from file

• Create new node

• Add each of the children nodes of the root node of the
loaded scene as children nodes of the new node

• Set position (and scale/rotation if necessary) of new node

Adding Complex Objects
• In Code:

Deleting Objects
• Just remove as child node of root node of sceneView

Enabling Interaction
• Add Gesture Recognizer to sceneView

• And extension to transformation matrix class

Enabling Interaction
• One can check if we tapped on a feature point to add a

node

• Or can check if we tapped a node that already exists and
remove it

Adding in Lighting
• Default lighting is probably sufficient unless you want to

have some kind of effect (for example, a spotlight on a
certain character)

Demo
(Less Cool)

CoreML

• An even bigger buzzword

• Lets you convert ML code written in Python into
a .mlmodel file can be dropped directly into your app

• Hard part: optimizes code for iOS devices

• Some helpful preprocessing included

• Does not currently support on-device training

Architecture

(GPU Stuff)(Optimized Operations)

(Custom*)

(Apple)

* = don’t use a custom model unless Apple doesn’t
cover your use case or you’re Andrew Ng

Vision
• Allows you to do many things (detect face landmarks, OCR,

scan barcodes, optical flow)

• Slower but more accurate than CoreImage and AVFoundation

• Three Steps

• Call VNRequestHandler

• Which executes a VNRequest

• And returns some VNObservation for you to process

Vision: Code
• Be sure to add Camera Usage Description to Info.plist

and import Vision

Demo

NSLinguisticTagger
• Hello NS my old friend

• On device processing so no privacy worries

• Can identify language, tokenize (split up into chunks), lemmatize
(give root form of word), and detect named entities (nonstandard
words that may be important)

• Two Steps

• Create NSLinguisticTagger with tagSchemes set to application

• Set tagger.string to the text to be analyzed.

NSLinguisticTagger: Code
• For example, to detect dominant language:

• For all use case sample code, check out this link

https://willowtreeapps.com/ideas/apples-natural-language-processing-nlp-api

Custom Models

• A couple popular models already converted by Apple
here

• In general, find code on Github or on arXiv

• Use python 2.7 package coremltools to convert code
to .mlmodel format

• Then, instantiate instance of generated class and use
model.prediction() method

https://developer.apple.com/machine-learning/
https://arxiv.org/

coremltools Sources

Python Package Setup
• Need to be in python 2.7

• pip install virtualenv

• virtualenv --python=/usr/bin/python2.7 py2.7

• source py2.7/bin/activate

• pip install numpy

• pip install scipy

• pip install sklearn

• pip install coremltools

Spam Detection

• SMS Spam Detection is a mostly solved problem that can
effectively treated without using neural networks

• We’re going to train a classifier to detect spam based on
a provided dataset

• We’ll be using the Naive Bayes, Support Vector Machine,
and Random Forest classifiers

Loading the Data

• We’ll be using data from here

• In machine learning, getting good and clean data is often the hardest part

• First, we load and split our data

• We train on the train data and check accuracy on test data

http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/

Testing our Models
• Use library you’ve selected and create models to solve

your problem (each of the models hear include a
preprocessing vectorizer and then a classifier)

• Train the models on the test, predict on the test set and
compare to the true output for the test set to get
accuracy

Converting a Model
• Train an instance of the best model on all the data (not

just the training set)

• Use appropriate coremltools converter for your chosen
framework (see here for full documentation)

• Save the model as a .mlmodel file

https://apple.github.io/coremltools

Using an .mlmodel in Your
App

• Drag and drop the file into your project

• Import CoreML

• Format your data as an MLMultiArray and pass it into the
model.prediction() method

• Pick outputs from prediction (for example: most likely
class, class probabilities)

Spam Detection: Code

Vectorization: Code

Demo

Spam Detection:
 Closing Points

• Check out my blog if you’re curious for how to integrate the
code so far into an iMessage App

• Nowadays, this kind of problem is solved using neural
networks (see here if curious)

• Convolutional Neural Networks work very well with text
classification (see here and here if curious)

• We’d use k-fold cross validation to tune hyper-parameters as
well as tf-idf vectorization if we were to do this irl

• Additionally, we’d use a much larger and more diverse dataset

http://gokulswamy.me/imessage-spam-detection/
https://gmail.googleblog.com/2015/07/the-mail-you-want-not-spam-you-dont.html
https://arxiv.org/pdf/1408.5882.pdf
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf

Machine Learning
• If you’d like to learn more, check out the following

resources

• ML@B Blog by Geng and Shih

• STATS 385 Cheat Sheet

• CS 189 by Sahai

• CS 231n by Karpathy

• Deep Learning by Goodfellow and Bengio

https://ml.berkeley.edu/blog
https://stats385.github.io/cheat_sheet
http://www.eecs189.org/
http://cs231n.stanford.edu/
http://www.deeplearningbook.org/

Conclusion

• iOS devices are capable of some pretty awesome stuff

• Team up with people who are amazing at what they do
(researchers, artists, …) to build more complex apps

• You’ve learned how to build awesome things that people
all around the world can use

• So start making and never stop!

